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Overview first 1/3 of the lecture
 

Quick Review of Linear Programming: 

• some geometry 

• extreme points (corner points) 

• an overview of the simplex algorithm 

Networks 

• extreme points 

• basic feasible solutions 

The Network Simplex Algorithm 
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A Two Variable Linear Program
 

z = 3x  + 5yobjective 

2x  +   3y ≤ 10 

x + 2y ≤ 6 

x ≤ 4 

y ≤ 3 

x, y ≥ 0 

(1)
 

(2)
 

(3)
 

(4)
 

(5)
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Graphing the Feasible Region
 

Graph the Constraints: y 

5
 

4
 

3
 

2
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2x+ 3y ≤ 10 (1) 

x ≥ 0 ,  y ≥ 0.     (5) 

2x + 3y = 10 

x
1 2 3 4 5 6
 
4 



 

  

  

Add the Constraint:
 
y
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5 
x + 2y ≤ 6 (2) 

x + 2y = 6 

x
1 2 3 4 5 6
 
5 



 

  

 

Add the Constraints: 

y x ≤ 4;  y ≤ 3
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1 2 3 4 5 6
 

We have now 

graphed the 

feasible 

region. 

x
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The geometrical method for optimizing 3x + 5y
 

y 

3
 

2
 

1
 

x 

Graph points such that 3x + 5y = p 

for various values of p. 

3x + 5y = 11 

Choose p maximal 

3x + 5y = 8 
Isocost lines 

1 2 3 4
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1 

2 

3 

Find the maximum value p such that there is a 

feasible solution with 3x + 5y = p. 

Move the line with profit p parallel as much as 

possible. 

3x + 5y = 8 

3x + 5y = 11 

3x + 5y = 16 

The optimal 

solution 

occurs at an 

extreme 

point. 

x 
1 2 3 4 
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Extreme Points (Corner Points)
 

An extreme point (also called n corner point)  of the 

feasible region is a point that is not the midpoint of 

two other points of the feasible region. 

Where are the 

extreme points of 

this feasible 

region? 
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The Simplex Method
 

1 

2 

3 

4 

5 

y 

Start at any feasible extreme point. 

Move along an edge (or extreme ray) in which the 

objective value is continually improving.  Stop at the 

next extreme point.  (If moving along an extreme ray, 

the objective value is unbounded.) 

Continue until no adjacent extreme point has a better 

objective value. Max z = 3 x + 5 y 

3 x + 5 y = 19 

x 10
1 2 3 4 5 6 10
 



 

 

 

 

Comments about the simplex algorithm 

Each step is called a pivot. 

•	 Pivots are carried out using linear algebra 

•	 Pivots for network flow problems can be carried 

out directly by changing flows in arcs. 

Typically, the simplex method finds the optimal 

solution after a “small” number of pivots (but can 

be exponential in the worst case). 

The simplex algorithm is VERY efficient in practice.
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Back to networks
 

We will work with the arcs of the original network 

(not the residual network) 

We will soon describe extreme flows. 

Connection between spanning tree flows and 

extreme flows. 

12 



 

 

 

 

 

 

1 

Networks:  sending flow around a cycle
 

-1 

2 3 

+1 

C 

4

-1
 

+1 

Arcs (1,2) and (4, 1) 

are forward arcs. 

Arcs (3, 2) and (4, 3) 

are backward arcs. 

Assume that cycles are oriented in 

a direction. The forward arcs of the 

cycle are the arcs in the same 

orientation. The backward arcs are 

in the opposite direction. 

A flow of 1 unit around C refers to 

a flow of 1 unit in the forward arcs 

and a flow of -1 units in the arcs in 

the backward arcs. 

13 



 

 

 

 

 

   

   

 

  

  

 

What is an extreme point solution of a 

network flow problem?
 

Let x be a feasible flow for a minimum cost flow problem. An 

arc (i, j) is called free if 0 < xij < uij.   One can increase or 

decrease the flow in a free arc by a small amount and still 

satisfy bound constraints. 

Theorem. A feasible flow x is an extreme point solution if 

and only if there is no (undirected) cycle of free arcs. 

Proof. Suppose that C is a free cycle.  We will show that x is 

not extreme. Let yC be a flow of 1 unit around C. 

1 

2 3 

5 

C 

Since all arcs of C are free wrt x, there is 

some ε > 0  so that x’ = x + ε yC is a 

feasible flow  and so that 

x” = x – ε yC is feasible. 

x is the midpoint of x’ and x”. 
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Proof continued
 
Suppose that x is not an extreme point.  Suppose that 

x = (x’ + x”)/2 and for feasible flows x’ and x”. 

We will show that there is a free cycle. 

Consider arc (i, j).  = (x’ij + x”ij)/2.xij 

if xij = 0 then x’ij = x”ij = 0  (Otherwise x’ij < 0 or x”ij < 0). 

If xij = uij then x’ij = x”ij = uij (Otherwise x’ij > uij or x”ij > uij). 

So, x differs from x’ and x” on free arcs. 

1 

2 3 

5 

C 

x’ – x is a circulation, and so it is 

expressible as the sum of flows around 

cycles.  It follows that there is a cycle of 

free arcs. 
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Basic feasible solutions
 

A basis structure consists of a spanning tree T, a set L 

of arcs, and a set U of arcs, such that T∪ L ∪ U = A. 

For each (i,j) ∈ L, xij = 0. 

For each (i,j)∈ U, xij = uij. 

The arc flows in T are selected so that each node 

satisfies its supply/demand constraint. 

The basis structure is feasible if the arc flows also 

satisfy the upper and lower bounds. (Not all basis 

structures are feasible.)  The feasible flow is called 

basic. 16 



 

 

 

 

 

Calculating A Spanning Tree Flow
 

A tree with 

supplies and 

demands.  

(Assume that all 

3	 other arcs have a 

flow of 0) 

What is the flow 

in arc (4,3)? 

1 

3 6 

4 5 

2 7 

1 

-6 

-4 
1 

2 3 

See the animation: slide 2
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What would happen if the flows in non-

tree arcs were not 0?
 

1 

3 6 

4 5 

2 7 

1 

-6 

-4 

1 

2 
3 

1 

3 

Suppose that non-

tree arcs had a non-

zero flow.  How 
3 

would this change
 
the computations?
 

2 
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What would happen if the flows in non-

tree arcs were not 0?
 

Adjust the 

supplies/demands. 

3 
6 

They will be interpreted 

as excesses and 

deficits. 

2 
4 

The compute flows as 

in the previous 

method; e.g., what is 

the flow in (4,3)? 
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What would happen if the flow were negative?
 

If the direction of (4,3) were reversed, the 

flow in (3,4) would be negative.
 

A spanning tree flow is 

guaranteed to satisfy the 

supply/demand constraints. 

It may violate an upper or 

lower bound. 

A spanning tree flow is 

called feasible if it satisfies 

its upper and lower bound. 

Otherwise, it is infeasible. 
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3 6 

4 5 

2 7 

1 

3 

-6 

-4 
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2 3 

-2 
3 

6 4 

4 3 
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Another way of calculating flows in arcs
 

Case 1.  If (i, j) is not in the tree, then xij = 0.
 

The total supply in 

subset S = (3,4,5) of 

nodes is 6.  How can 
3 one satisfy the 

supply/demand 

constraints for S? 

1 

3 6 

4 5 

2 7 

1 

-6 

-4 
1 

2 3 
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Another way of calculating flows in arcs
 

Deleting an arc (i,j) of T 

splits the nodes into two 

subsets, S and N-S. 

To compute the flow in 

(i,j), compute ∑j∈S b(j). 

1 

3 6 

4 5 

2 7 

1 

3 

-6 

-4 
1 

2 3 
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Another way of calculating flows in 

arcs, general case
 

1 

3 6 

4 5 

2 7 

1 

3 
-6 

-4 
1 

2 3 
2 

1 

3 

Case 2.  If (i,j) is not in the tree, then xij = 0 or uij 

Deleting an arc (i,j) of T 

splits the nodes into two 

subsets, S and N-S. 

Let f(S, N-S) denote the flow 

across the cutset (S, N-S) 

from the non-tree arcs. 

To compute the flow 

in (i, j), compute 

∑j∈S b(j) - f(S, N-S). 
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Simplex Multipliers
 

Simplex multipliers for the network simplex 

algorithm are a special case of node potentials. 

•	 They are selected so that the reduced costs of every 

tree arc is 0. 

•	 In the simplex algorithm for linear programs, 

basic variables have a reduced cost of 0. 
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Calculating Simplex Multipliers for a 

Spanning Tree
 

1 

3 6 

4 5 

2 7 

5 
-6 

-2 

-4 

1 

3 

0 

To calculate node 

potentials, 

1. Let π1 = 0; 

2.  Choose other 

multipliers so that for 

each arc (i,j) in the tree 

- πi + πj = 0. cij 

What is the node 

potential for node 2? 

See the animation page 9.
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An alternative approach for calculating 

simplex multipliers
 

1 

3 6 

4 5 

2 7 

5 
-6 

-2 

-4 

1 

3 

0 

Let πi be the cost 

of the path from 

node i to node 1 

(the root node) in T. 

If (j,k) is backward, 

then use cost -cjk. 

What is the 

simplex multiplier 

for node 4? 

What is the 

simplex multiplier 

for node 6? 
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Mental Break
 

How tall is a baby giraffe at birth? 

Around 6 feet 

In 1859, 24 rabbits were released in Australia. How many were 

there 6 years later? 

More than 2 million. 

The female American oyster lays lots of eggs per year even 

though only one of the bunch reaches maturity. Approximately 

how many eggs does the oyster lay? 

About 500 million 
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Mental Break
 

Human beings typically mate face-to-face.  How many other 

kinds of land animals mate face-to-face. 

One other: the 2-toed sloth. 

Humans have around 600 muscles.   How many muscles do 

caterpillars have? 

Around 6000 

What do bats do upon exiting a cave? 

They turn left. 
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Optimality Conditions (again)
 
Optimality Conditions for Spanning Tree Solutions: 

The following are conditions under which x is an 
optimal solution for the minimum cost flow 
problem and π is optimal for the dual problem: 

1. The basic flow x is feasible 
2. π is the vector of simplex multipliers. 
3. For each non-tree arc (i, j) 

a. if cπ  

ij > 0, then xij = 0 
b. if cπ  

ij < 0, then xij = uij 

What is the flow on arc 


(5,6) if arc (5,6) satisfies 


the optimality conditions? 
 

1 

3 6 

4 5 

2 7 

0 

0 0 

00 

0 

-4 
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Violating Arcs
 

(T, L, U) : a spanning tree structure. 
x: basic feasible flow 
π  : simplex multipliers.
 

cπ  reduced costs
ij 

A non-tree arc is a violating arc and eligible for 
entering the basis if 

i. cπ  

ij < 0 and xij = 0 or 
ii. cπ  

ij > 0 and xij = uij. 
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The Network Simplex Pivot
 

1. 	 Choose a violating non-tree arc. If no such arc exists, 
then the solution x is optimal. 

2. 	 Add (i,j) to T creating a unique cycle C.  Send a 
maximum flow around C while maintaining feasibility.  
Suppose the exiting arc is (p,q). 

3. 	 Update the multipliers so that the reduced costs of all 
tree arcs are 0 after the pivot. 

T-(p,q) partitions into two subtrees, T1 and T2 with the root 
node in T1. 
Let d = |cπ  

ij|. 
If i ∈  T1, then add |cπ  

ij| to each node v∈ T2. 
If i ∈  T2, then subtract d from each node in T2. 
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The Steps for the network simplex
 

1. 	Select the entering arc. 

Key data structure: maintain the simplex multipliers. 

O(1) step to determine if (i,j) is violating. 

2. 	Determine the basic cycle C.  Determine the flow 
around the basic cycle.  Send the flow. 

3. 	Determine the subtree T2 obtained upon deleting the 
exiting arc from the current spanning tree.  Update all 
multipliers in T2. 

See page 17 of animation 
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On implementations
 

The time it takes is sensitive to the data structures 

used to implement the algorithm. 

All reasonable implementations take O(n) time per 

pivot.   Some work slightly better in practice (as 

described in the text.) 

33 



   

 

  

Some Remaining Issues
 

How can we avoid cycling in the simplex method? 

(Or what do we do if the amount of flow sent 

around a cycle is 0). 

What is the worst case performance of the simplex 

method? 

What are some good heuristics to speed up 

performance in practice? 
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Summary
 

1. Network simplex is extremely fast in practice.
 

2.	 Relying on network data structures, rather than 

matrix algebra, causes the speedups.  It leads to 

simple rules for selecting the entering and 

exiting variables. 

3.	 A good pivot rule can dramatically reduce 

running time in practice. 
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Optional Material:   Data Structures for 

the Network Simplex Algorithm
 

1. 	 Hang the tree from a root node. 

2. 	 For each node, store pred(i), the parent of i in the 

tree. 

3. 	 For each node i store the depth(i), the number of 

arcs on the path from i to the root. 

4. 	 For each node i, store a pointer to the next node 

on the depth first search ordering of T.  This data 

structure is called the thread. 
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A spanning tree, as part of a spanning 

tree solution
 

1 

5 6 

7 2 

4 3 

Node 1 is the 

root node. The 

tree “hangs” 

from the root 

node. 
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 The Depth of Nodes, and Predecessors
 

1 

Pred(2) = 5, 

Pred(3) = 1, etc. 

5 6 

7 2 

4 3 

0 

11 

2 

3 3 

2 
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The Thread
 

1 

5 6 

7 2 

4 3 

The thread is 

obtained by 

performing a depth 

first search of the 

tree.  Each node 

points to the next 

one on the dfs. 
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 Finding the Cycle
 
procedure IDENTIFY CYCLE; 

begin 

set i : = k and j : = l; 

while i ≠ j do 

begin 

if depth(i) > depth(j) then i : = pred(i) 

else if depth(j) > depth(i) then j : = pred(j) 

else i : = pred(i) and j : = pred(j);
 

end;
 
set w : = i;
 

end; 

Running time is O(|C|) 
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Updating the Multipliers
 

Suppose: (i,j) is pivoted in and that (p,q) is pivoted out.
 

Suppose that T2 consists of node p plus the descendents of p 

in the tree. 

Use the thread to trace out T2. 

Stop when depth(CurrentNode) ≤ depth(p). 

Running time = O( | T2| ). 

Updating the data structures.  O( |C| + | T2| ). 
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