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Network Flow Duality and
Applications of Network Flows



Overview of Lecture

• Applications of network flows
• shortest paths
• maximum flow
• the assignment problem
• minimum cost flows

• Linear programming duality in network flows and 
applications of dual network flow problems
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• Applications of network flows

• shortest paths
• maximum flow
• the assignment problem
• minimum cost flows
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Most reliable paths

Let pij be the probability that an arc is working, and 
that all arcs are independent.  

The probability that a path P is working is  

4

  p
ij(i , j )P

What is the most reliable path from s to t, that is the 
one that maximizes the probability of working?

   

max p
ij(i , j )P

s.t. P P(s,t)    

min 1/ p
ij(i , j )P

s.t. P P(s,t)

   

min log 1/ p
ij(i , j )P  log 1/ p

ij (i , j )P

s.t. P P(s,t) Let  cij = log 1/pij



Dynamic Shortest Paths
Suppose that the time it takes to travel in arc (i, j) depends on 

when one starts.  (e.g., rush hour vs. other hours in road 
networks.)

Let cij(t) be the time it takes to travel in (i, j) starting at time t.   
What is the minimum time it takes to travel from node 1 to 
node n starting at 7 AM?
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7 7:10 7:20 7:30 7:40 7:50 …

(1,2) 20 30 30 20 … … …

(1,3) 10 10 10 10 … … …

(2,3) 20 20 20 20 … … …

(3,4) 10 20 20 10 … … …

…

Start time

ar
c

travel time in minutes 



The time expanded network

(1,2) 20 30 30 20 … …

(1,3) 10 10 10 10 … …

(2,3) 20 20 20 20 … …

(3,4) 10 20 20 10 … …

7 7:10 7:20 7:30 7:40 7:50

What is the 
minimum time 
T such that 
there is a path 
from node 1 at 
7 AM to node 
n at time T?
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• Applications of network flows
• shortest paths
• maximum flows
• the assignment problem
• minimum cost flows
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App. 6.4   Scheduling on Uniform Parallel Machines

Suppose there are 2 parallel machines.  Is there a 
feasible schedule?

2 1 4

3

The best  (infeasible) schedule without preemption.

Job(j) 1 2 3 4

Processing
Time

1.5 3 4.5 5

Release
Time

2 0 2 4

Due Date 5 4 7 9
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A feasible schedule with preemption

Preemption permits a job to be split into two or more 
parts and scheduled on the same or different 
machines, but not two machines at the same time.  How 
can one find a feasible schedule when preemption is 
allowed?

Job(j) 1 2 3 4

Processing
Time

1.5 3 4.5 5

Release
Time

2 0 2 4

Due Date 5 4 7 9

2 1 4

3 34
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Transformation into a maximum flow problem

Time allocation is the thing 
that is flowing.

• Job j must have p(j) 
units of time allocated 
to it.

uij = 1 for arcs from 
green to yellow

s t

1.5

3

4.5
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1,2

2,3

3,4

4,5

5,6

6,7

7,8

8,9
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2

2

2

2

2

2

2

• Job j can be scheduled 
for at most one time 
unit in any period.

• If there are m machines, 
then at most m different 
jobs may be scheduled 
in  any period.
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The optimal allocation and flow

2 1 4

3 34
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A more efficient transformation
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Merge two adjacent period nodes if the same 
set of tasks can be scheduled in both 
periods.  The number of nodes after merging 
is less than 2 |J|, where J = set of jobs.
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Sports Writer Problem

Has Tampa already been eliminated from winning 
in this hypothetical season finale?  

Bos

NY

Balt

Tor

82

77

80

79

Games 
Won

Games 
Left

8

8

8

8

Tamp 74 9

Bos NY Balt Tor

Bos

NY

Balt

Tor

-- 1 4 1

1 -- 0 3

4 0 -- 1

1 3 1 0

Tamp 2 4 0 3

Tamp

2

4

0

3

0

Games remaining
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Bos

NY

Balt

Tor

82

77

80

79

Games 
Won

Games 
Left

11

8

8

8

Tamp 74 9

Data assuming that Tampa wins all its 
remaining games.

Question:  can the remaining games be played 
so that no team wins more than 83 games?

Bos

NY

Balt

Tor

82

77

80

79

Games 
Won

Games 
Left

6

4

6

5

Tamp 83 0

Bos NY Balt Tor

Bos

NY

Balt

Tor

-- 1 4 1

1 -- 0 3

4 0 -- 1

1 3 1 --

Games remaining

http://riot.ieor.berkeley.edu/~baseball/
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Flow on (i,j) is interpreted as games won.

4

1

3

1

1

1

6
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max wins 
permitted    

s

Red Sox
vs. Orioles

Red Sox
vs. Blue Jays

Yankees 
vs. Blue Jays

Orioles 
vs. Blue Jays

Red Sox
vs. Yankees

t

Red Sox

      Yankees

Orioles

Blue Jays
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A Maximum Flow

Red Sox
vs. Orioles

4

Red Sox
vs. Blue Jays

1

Yankees 
vs. Blue Jays

3

Orioles 
vs. Blue Jays

1

1
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3

4
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1
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• Applications of network flows
• shortest paths
• maximum flows
• the assignment problem
• minimum cost flows



The Assignment Problem
n persons

n tasks

uij = utility of assigning 
person i to task j

•Maximize the sum of the utilities
•Each person gets assigned to a 
task
•Each task has one person 
assigned to it.

18  

max u
ij
x

ij
j1

n


i1

n



x
ij
 1 i

j1

n



x
ij
 1 j

i1

n



x
j
 {0,1} j

1

1

1

1
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1
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Identifying Moving Targets in Space
Suppose that there are moving targets in space.  

You can identify each target as a pixel on a radar screen.  

Given two successive pictures, identify how the targets have 
moved.

This is an 
efficient 
way of 
tracking 
items.
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• Applications of network flows
• shortest paths
• maximum flows
• the assignment problem
• minimum cost flows



Chinese Postman Problem (directed version)

21

A postman (using a 
postal truck) wants to 
visit every city street 
at least once while 
minimizing the total 
travel time.

  

min c
ij
x

ij(i , j )A
s.t. x

ijj  x
kik  0 i N

x
ij
 1 (i , j)A

xij = number of times 
that the postman 
traverses arc (i, j)

cij = length of (i, j)



Chinese Postman Problem (undirected)
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dij = minimum length 
of a path from 
node i to node j.

Compute dij for all 
nodes i, j of odd 
degree.

odd degree

even degree

Add paths joining nodes of odd 
degree so as to minimize the total 
d-length.  (This is a nonbipartite
matching problem.)



Duality for Network Flow Problems

Each network flow problem has a corresponding 
problem called the “dual”.

Rest of lecture:
• Review of max flow min cut theorem
• Weak Duality in linear programming
• Strong Duality in linear programming
• Duality for shortest paths plus applications
• Duality for min cost flow plus applications
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Duality for the max flow problem

Theorem. (Weak duality).  If x is any s-t flow and if 

(S, T) is any s-t cut, then the flow out of s is at 

most the capacity of the cut (S,T).

24

1
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s t
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4

6

8s

In this example, the 
capacities of all arcs is 1.

The max flow consists of 
the thick arcs.

If S = red nodes, then min 
cut (S, N\S).

Theorem. (Max-flow Min-Cut).  The maximum flow 

value is the minimum capacity of a cut.



Weak Duality in Linear Programming
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Weak Duality Theorem. 
Suppose that x is feasible for 
the primal problem and that  
π is feasible for the dual 

problem.  Then cx ≤  πb. 

Proof

  

A  c and x  0  Ax  cx

Ax  b  Ax  b

Therefore,   b  cx.

  

max cx

s.t. Ax  b

x  0

Primal Problem

  

min b

s.t. A  c

Dual Problem



Strong Duality in Linear Programming
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max cx

s.t. Ax  b

x  0

Primal Problem

  

min b

s.t. A  c

Dual Problem

Strong Duality Theorem. 
Suppose that the primal 

problem has an optimal 
solution x*.  
Then the dual problem also 

has an optimal solution, say 
π*, and the two optimum 

objective values are the same.  
That is, cx* =  π*b. 

Note:  it is not obvious that max-flow 
min-cut is a special case of LP duality.



Duality for the shortest path problem

Let G = (N, A) be a network, and let cij be the length 
or cost of arc (i, j).  The shortest path problem is 
to find the path of shortest length from node 1 to 
node n.

We say that a distance vector d( ) is dual feasible
for the shortest path problem if
1. d(1) = 0
2. d(j) ≤ d(i) + cij for all (i, j) ∈ A.

The dual shortest path problem is to maximize d(n) 
subject to the vector d( ) being dual feasible.

27



Duality Theorem for Shortest Path Problem

Let G = (N, A) be a network, and let 
cij be the length or cost of arc (i, j).  
If there is no negative cost cycle, 
then the minimum length of a path 
from node 1 to node n is the 
maximum value of d(n) subject to 
d( ) being dual feasible.
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Application:  Optimum Paragraph Layout
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TeX optimally decomposes paragraphs by
selecting the breakpoints for each line
optimally. It has a subroutine that computes
the attractiveness F(i,j) of a line that begins
at word i and ends at word j-1.  How can one
use F(i,j) to create a shortest path problem
whose solution will solve the paragraph
problem?

The paragraph layout problem can be modeled as a 
shortest path problem or the dual of a shortest path 
problem.



Application:  Optimum Paragraph Layout
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Let d*(j) be the value of laying out words 1 to j-1 most 
attractively.   d* can be computed as follows.      

min   d(n+1)
s.t     d(j) ≥ d(i) + F(i, j) ∀ (i,j) ∈ A        d(i) ≤ d(j) – F(i, j)

d(1) = 0 

For any feasible vector d, d(j) is an upper bound on the 
beauty of laying out words 1 to j – 1.

The most accurate upper bound gives the optimum 
beauty.

There is a close connection to dynamic programming.



Application:  project scheduling
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Activity Predecessor Duration
A (Train workers) None 6
B (Purchase raw materials) None 9
C (Make subassembly 1) A, B 8
D (Make subassembly 2) B 7
E (Inspect subassembly 2) D 10
F (Assemble subassemblies) C, E 12

0

A

B

C

D E

F

n



Application:  project scheduling
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Activity Predecessor Duration
A (Train workers) None 6
B (Purchase raw materials) None 9
C (Make subassembly 1) A, B 8
D (Make subassembly 2) B 7
E (Inspect subassembly 2) D 10
F (Assemble subassemblies) C, E 12

Let s(i) be the start time of task i.
Let f(i) be the finish time of task i.
Let p(i) be the processing time of task i.

minimize     f(n)
subject to   s(0) = 0

f(j) = s(j) + p(j)    for all j ≠ 0 or n

s(j) ≥  f(i)  if i precedes j.  

Corresponds to a longest path problem.   We can make it a 
shortest path problem by letting g(j) = - f(j) for all j.



Project scheduling with just-in-time delivery
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Let s(i) be the start time of task i.
Let f(i) be the finish time of task i.
Let p(i) be the processing time of task i.

minimize     f(n)
subject to   s(0) = 0

f(j) = s(j) + p(j)    for all j ≠ 0 or n

s(j) ≥  f(i)  if i precedes j

s(j) ≤  f(i) + h(i, j) or   f(i)  ≥ s(j) - h(i, j) 

Suppose that for some tasks i and j, task j must be 
started within h(i, j) time units of task i finishing.



Duality for minimum cost flows
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min c
ij
x

ij(i , j )A
s.t. x

ijj  x
kik  b

i
i N

x
ij
 0 (i , j)A

Uncapacitated min cost flow problem

  

max 
i
b

iiN
s.t. c

ij
 

i
 

j
 0 (i , j)A


i
 

j
 c

ij

Dual of the uncapacitated  MCF problem.

Theorem. Suppose 
that x is feasible for 
the uncapacitated 
MCF problem, and  π 

is feasible for the 
dual problem.  Then 
cx ≥ πb.  

If one of the 
problems has a finite 
optimum, then so 
does the other, and 
the two values are 
the same.



More on Duality

1. One can solve the dual problem using an 
algorithm for solving the uncapacitated MCF 
problem.

2. Any linear programming problem in which every 
constraint is either a lower bound on a variable 
or an upper bound on a variable or of the form  
“yi – yj ≤ cij” is the dual of a minimum cost flow 
problem.
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Maximum Weight Closure of a Graph

Let G = (N, A).  Let wi be the weight of node i.
A subset S ⊆ N  is called a closure if there are no 

arcs leaving the subset.  That is, if i ∈ S and if   (i, 
j) ∈ A, then j ∈ S.

36

i j

The maximum weight closure problem is to find a 
closure of maximum weight.  It is the dual of a 
minimum cost flow problem.

  

max w
i
y

iiN
s.t. y

i
 y

j
 0 (i , j)A

0  y
i
 1 i N



Open Pit Mining
Suppose an open pit mine is subdivided into 

blocks.  We create a graph G = (N, A) as follows:
1. There is a node for each block
2. If block j must be removed before block i, 

then (i, j) ∈ A.
3. The net revenue from block i is wi.

37

j k
i

(i, j) ∈ A 
(i, k)∈ A  

Special 
case of 

the 
closure 

problem.



Project management with “crashing”
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Let s(i) be the start time of task i.
Let f(i) be the finish time of task i.
Let p(i) be the original  

processing time of task i.

Suppose that one can 
reduce the time at which 
task j is completed for 
each j.  The cost of 
reducing the time for task 
i is ci per unit of time.

What is the least cost 
schedule that completes 
all tasks by time T?   

min c
i

p(i)  s(i)  f (i) 
i

s.t. f ( j)  s(i)  0 (i , j) A

f (i)  s(i)  p(i) i N

s(0)  0; f (n) T

The above LP is the dual of a minimum cost 
flow problem.



Summary

There are hundreds of direct applications of the 
minimum cost flow problem or its dual.

Even more common, min cost flow problems arise 
as subproblems of a larger and more complex 
problem.  We will see more of this in a few 
lectures from now.

Next Lecture:   the simplex algorithm for the min 
cost flow problem.
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