
15.082J and 6.855J and ESD.78J

October 26, 2010

Introduction to Minimum Cost Flows

Overview of lecture

• Quick review of min cost flow problem

• An application of min cost flows

• The residual network, again

• The cycle canceling algorithm for solving the min

cost flow problem

• Reduced costs and optimality conditions

2

3

The Minimum Cost Flow Problem

uij = capacity of arc (i,j).
cij = unit cost of shipping flow from node i to

node j on (i,j).
xij = amount shipped on arc (i,j)

Minimize ∑(i,j)∈A cijxij

∑j xij - ∑j xji = bi for all i ∈ N.

and 0 ≤ xij ≤ uij for all (i,j) ∈ A.

4

Find the shortest path from node 1 to node 6

The optimal flow is to send one unit of flow along

1-2-5-6.

This transformation works so long as there are no

negative cost cycles in G.

(What if there are negative cost cycles?)

1

2

3

4

5

6

2

4

21

3

4

2

3

2

b(1) = 1 b(6) = -1

0 0

00

5

Find the Maximum Flow from s to t

s

1

2

t

10, 8
8,7

1,1

10,66, 5

b(i) = 0 for all i;

add arc (t,s) with a

cost of -1 and

large capacity.

The cost of every

other arc is 0.

The optimal solution in the corresponding minimum

cost flow problem will send as much flow in (t,s) as

possible.

13

6

Transshipment Problems

Plants with given production capabilities for a
product.

One can ship directly from the plants to retailers, or
from plants to warehouses, and then from
warehouses to retailers.

There is a given demand for each retailer.

Costs of shipment are given.

What is the minimum cost method for satisfying
demands?

7

A Network Representation

Plants
Warehouses

Retailers

1

2

3

4

5

6

7

190

310

100

400

180

Demands

1

2

3

4

5

6

7

400

1

2

3

4

5

6

7

400

1

2

3

4

5

6

7

8

The Caterer Problem

Demand for di napkins on day i for i = 1 to 7 (so, j ∈ [1..7]).

Cost of new napkins: a cents each,

2-day laundry: b cents per napkin

1-day laundry: c cents per napkin.

Minimize the cost of meeting demand.

Assumptions:

• there is no initial inventory of napkins

• at the end, no clean napkins remain

Application to

airplane

maintenance.

An example with a feasible solution

new napkins: $10

1 day cleaning $2

2-day cleaning $1

9

Demand:

M-F 100 napkins,

Sa-Su 125 napkins

0

51 2 3 4 6 7

51 2 3 4 6 7

n+1

100 100

100
125

100 100 100 100
25

75

50

new napkins

125
75

dirty napkins

clean napkins

200

Nodes and Arcs

10

Node j : Clean napkins on day j

Node j’ : Dirty napkins on day j

Node 0: Where napkins originate

Node n+1: Where napkins

go to stay dirty

Clean napkins on day 5

come from

• purchases (0, 5)

• leftover clean

napkins (4, 5)

• 2-day laundry (3’, 5)

• 1-day laundry (4’, 5)

Clean napkins on day 5

go to

• being used (5, 5’)

• being stored (5, 6)

0

0

5

5’

n+1

4’3’

4
Clean

napkins

dirty

napkins

a

c
b

0

flow =

d5

6

Nodes and Arcs

11

Dirty napkins on day 5 come

from

• being used on day 5 (5, 5’)

Dirty napkins on day 5 go to

• never cleaned (5, n+1)

• 1-day cleaning (5’, 6)

• 2- day cleaning (5’, 7)

5

5’

n+1

Clean

napkins

Dirty

napkins

c b
Flow

= d5

6 7

0

The network for the caterer problem

12

0

51 2 3 4 6 7

51 2 3 4 6 7

n+1

Find a minimum cost circulation such that the flow on (j, j’) = dj

on arcs (j, j’) for j = 1 to n. Lower bound = upper bound = dj

Arc (n+1, 0) : each purchased napkin ends up dirty.

The minimum cost flow problem

• Simplifying assumptions

• Finding a feasible flow

• The residual network

• The cycle canceling algorithm

• Reduced costs and optimality conditions

13

14

Some Assumptions

1. All data is integral. (Needed for some proofs,

and some running time analysis).

2. The network is directed and connected

3. ∑i=1 to n b(i) = 0.

(Otherwise, there cannot be a feasible solution.)

t

4

4

2

s
5

2

3

Finding a feasible solution

One can find a feasible solution when all lower

bounds are 0 by solving a single max flow

problem.

1. If b(j) > 0, create arc (s, j) with usj = b(j),

2. If b(j) < 0, create arc (j, t) with ujt = - b(j)

15

1

2

3

4

5

6

5

2 -4

-4

-23

s

4

4

2

t
5

2

3

Finding an artificial feasible solution

One can start with an “artificial” feasible solution with

large cost. The flow in these arcs will be 0 at the

end.

1. Add nodes s and t with b(s) = b(t) = 0

2. If b(j) > 0, create arc (j, t) with ujt = b(j) and cjt = 0

3. If b(j) < 0, create arc (s, j) with usj = - b(j) and cjt = 0

4. Add an arc (t, s) with uts = mumax and cts = mcmax

16

1

2

3

4

5

6

5

2 -4

-4

-23 cost = - M

Finding an artificial feasible solution

17

s

4

4

2

t
5

2

3

1

2

3

4

5

6

5

2 -4

-4

-23

Initial solution.

• If b(j) > 0, then xjt = b(j) (supplies are satisfied)

• If b(j) < 0, then xsj = - b(j) (demands are satisfied)

• xts = ∑b(j)>0 b(j) (flow into t = flow out of t)

• xij = 0 otherwise

In an optimal feasible solution, xts = 0. There is no flow in

any of the artificial arcs)

Why is the word “ring” part of “boxing ring”?

They used to be round.

How many dimples are in a regulation golf ball?

336

Was “tug of war” ever an Olympic event?

Yes. Between 1900 and 1920.

Mental Break

18

Where did karate originate?

In India.

What do the following nicknames for sports teams have in

common: the Miami Heat, the Minnesota Wild, the Utah

Jazz, the Boston Red Sox, and the Chicago White Sox ?

None of them ends in the letter s.

In which country is kite flying a professional sport?

Thailand.

Mental Break

19

20

The Residual Network G(x)

uij
i j

cij

uij - xij

i j

xij

cij

-cij

8
1 2

$10

Suppose x12 = 3

5

1 2

3

$10

-$10

Reducing the flow in (i, j) by 1 is equivalent to sending

one unit of flow from j to i. It reduces the cost by cij.

Negative cost cycles and augmentations

21

1

2 4

3 5

2

2
6

7

-7

-5
-2

-2

-1

-4

5

Note: each arc of G(x)

has a cost and a capacity.

Typically, we will only

show one of them.

A residual network G(x)

and its arc costs.

A negative cost cycle

refers to a directed cycle

in G(x) whose total cost is

negative, e.g., 1-3-2-1 and

3-5-4-3

Negative cost cycles and augmentations

22

To augment around a

cycle C is to send δ units

of flow around C, where

δ = min {rij : (i, j) ∈ C}

The capacities of the

residual network G(x).

The cycle 1-3-2-1 had

negative cost. Its

capacity is 15.

1

2 4

3 5

10

20

20

5

25 10

1015

5

20

10

The impact of an augmentation

23

The capacities of G(x)

before the augmentation.

1

2 4

3 5

10

20

20

5

25 10

1015

5

20

10

The capacities after the

augmentation.

1

2 4

3 5

10

20

5

20

10 10

25

5

20

10
15

24

Negative Cycle Algorithm
(also known as the cycle canceling algorithm)

Algorithm NEGATIVE CYCLE;

establish a feasible flow x in the network;

while G(x) contains a negative cost cycle do

use some algorithm to identify a negative
cost cycle C in G(x);

let δ : = min { rij : (i, j) ∈ C };

augment δ units of flow in cycle C;

update G(x);

Negative Cycle Algorithm

..%5CAnimations%5CCycle_Canceling.ppt

25

More on the Negative Cycle Algorithm

Suppose that all supplies/demands are integral,

and capacities are integral. Then the negative

cycle algorithm maintains an integral solution at

each iteration.

26

Finiteness

Theorem. The Negative Cycle Algorithm is finite if

all data are finite and integral.

Proof. By flow decomposition, we can express the

min cost flow as the sum of n+m paths and

cycles. Each path and cycle has a cost bounded

by nC, where C = max (|cij| : (i,j) ∈ A). The cost of

the flow is at most (nC)(n+m)U, where U is the

largest capacity.

At each iteration of cycle canceling, the cost

improves by at least one.

27

Optimality

Theorem. The Negative Cycle Algorithm terminates

with an optimal flow.

Proof. Consider the final residual network G(x*).

Suppose that x* is not optimal. Equivalently, the

flow y = 0 is not optimal for the circulation problem

in G(x*).

Let y* be a minimum cost circulation in G(x*). Then

y* can be decomposed into flows around cycles. At

least one of these cycles (say C) has negative cost.

But this contradicts that the algorithm terminated.

Reduced costs and optimality conditions

Reduced costs

 recall replacing cij – πi + πj for the shortest path

problem. The same transformation is very useful

for min cost flow algorithms.

Optimality conditions

 Most iterative optimization algorithms stop when

“optimality conditions are satisfied”. We

describe optimality conditions for the min cost

flow problem.

28

29

Reduced Costs in G(x)

$3
1 2

3

$1-$5

$3 – π1 + π2
1 2

3

$1 – π2 + π3-$5 – π3 + π1

Let πi denote the node potential for node i.

ij ij i j
c c
    

For unit of flow out of node i, subtract πi from the cost.

For unit of flow into node j, add πj to the cost.

30

More on Reduced Costs

Lemma. The reduced cost of a cycle is the cost of a cycle.

c

(C)  c

ij
 

i
 

j(i , j)C  c
ij(i , j)C  c(C)Proof:

$3
1 2

3

$1-$5

$3 – π1 + π2
1 2

3

$1 – π2 + π3-$5 – π3 + π1

Corollary. Optimizing with respect to reduced costs is

equivalent to optimizing with respect to the original costs.

Optimality Conditions

Theorem. A flow x* is optimal if and only if there is

a vector π* so that cπ*ij ≥ 0 for all (i, j) ∈ G(x*).

Proof. We already know that x* is optimal if and

only if there is no negative cost cycle in G(x*). It

remains to show that there is no negative cycle in

G(x*) if ∃ π* so that cπ*ij ≥ 0 for all (i, j) ∈ G(x*).

Suppose first that there is such a vector π*.

31

Then the reduced cost of every cycle in G(x*) must

be non-negative

Optimality Conditions

Proof. Continued.

Suppose now that there is no negative cycle cycle in G(x*).

Let d(i) be the shortest path length from node 1 to node i in

G(x*) using original costs. (Assume that such a path

exists).

Then for all (i, j) in G(x*), d(j) ≤ d(i) + cij ∀ (i, j) ∈ G(x*)

Let π*i = - d(i) for all i.

Then cπ*
ij = cij + d(i) – d(j) ≥ 0 for all (i, j) ∈ G(x*). QED

32

Optimality conditions for the original

network

If cπ*
ij ≥ 0 for all (i, j) ∈ G(x*), what is true about the

original network?

33

ui

j
i j

cπ*
ij

uij - xij

i j

xij

cπ*
ij

-cπ*
ij

Optimality conditions.

1. If x*ij = 0, then (j, i) ∉ G(x*) and

cπ*
ij ≥ 0.

2. If x*ij = uij, then (i, j) ∉ G(x*) and

cπ*
ij ≤ 0 (so that cπ*

ji ≥ 0)

3. If 0 < x*ij < uij, then (i, j) ∈ G(x*)

and (j, i) ∈ G(x*) and cπ*
ij = 0.

Optimality conditions again

34

Optimality conditions 1.

1. If x*ij = 0, then cπ*
ij ≥ 0.

2. If x*ij = uij, then cπ*
ij ≤ 0.

3. If 0 < x*ij < uij, then cπ*
ij = 0.

Optimality conditions 2.

1. If cπ*
ij > 0 then x*ij = 0,

2. If cπ*
ij < 0 then x*ij = uij,

3. If cπ*
ij = 0, then 0 ≤ x*ij ≤ uij.

Opt conditions 1

are equivalent

to optimality

conditions 2.

35

Review of Cycle Canceling

Given a flow x, we look for negative cost cycles

in G(x).

 If we find a negative cost cycle, we sent flow

around the cycle

 If we don’t find a negative cost cycle, we

establish optimality.

It is a very generic algorithm for solving

minimum cost flows.

Key subroutine: finding a negative cost cycle. It

can be done in different ways.

36

How to Find a Negative Cycle

POSSIBILITY 1. Use a shortest path algorithm to

determine a negative cost cycle.

POSSIBILITY 2. Find the most negative cost cycle.

POSSIBILITY 3. Augment along the cycle that minimizes

COST(C)/|C|. (The cost divided by the number of arcs.)

37

Summary

• Some applications of the minimum cost flow

problem

• Cycle Canceling Algorithm

• Integrality Property for Minimum Cost Flows

• Optimality Conditions

MIT OpenCourseWare
http://ocw.mit.edu

15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

