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Overview of today’s lecture

 Scaling Algorithms

 Potential function analysis

 The Excess Scaling Algorithm

 O(n2 log U) non-saturating pushes, 

where U = 1 + max{uij : (i, j) ∈ A} 

 O(nm + n2 log U) running time.

 A proof that Highest Level Preflow Push uses 

O(n2m1/2) non-saturating pushes.



Scaling Algorithms
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Generic Scaling 

Algorithm

Δ := 2K for some selected 

value K

determine a Δ-optimal 

solution x

while Δ > 1 do

y := ImproveApprox(x, Δ)

x := y

Δ := Δ/2      

1. Define a concept called Δ-

optimal, where Δ is some 

positive integer, and where a 

1-optimal solution is optimal 

for the original problem.

2. Develop a subroutine that 

efficiently determines Δ0-

optimum solution where 

Δ0 is some (possibly large) 

power of 2

3. Develop a subroutine 

Improve-Approx that 

transforms a Δ-optimal 

solution into a Δ/2-optimal 

solution. 
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The Capacity Scaling Algorithm

 A flow x is called Δ-maximum if there is no augmenting 
path in G(x) of capacity  or more.

 Note.  If Δ ≥ U, then x = 0 is Δ-maximum.  
U = 1 + max {uij : (i, j) ∈ A} 

 Subroutine ImproveApprox(x,Δ):  takes a flow that is 
-maximum and outputs a flow that is /2-maximum.

 We refer to a path in G(x) as a Δ-augmenting if it is an s-t 
path whose capacity is at least Δ.

ImproveApprox(x,Δ)

while there is a Δ/2-augmenting path in G(x) do

find a Δ/2-augmenting path P in G(x);

augment flow along P;

update residual capacities and data structures;
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Analysis of Capacity Scaling
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Lemma.   At the beginning of the Δ-scaling phase, there is a an s-t 

cut (S, T) such that the capacity of each arc (i, j) from S to T is 

less than Δ.   S = { j : there is a path P of capacity ≥ Δ from s to j}

The residual capacity of (S, T) is less than mΔ. 

Δ = 10
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Analysis of Capacity Scaling

Corollary. The number of augmentations per scaling phase is 

at most 2m.

Proof. Each augmentation reduces the residual capacity of 

the cut by at least Δ/2.

Lemma. The number of times that ImproveApprox is called is 

at most   ⎡log U⎤

Proof. Initially Δ = 2K, where K =  ⎡log U⎤

At each subsequent iteration Δ is halved.

The algorithm stops when Δ = 1.

The running time per scaling phase is O(m2).

The total running time is O(m2 log U)

The running time can be improved to O(nm log U)



A preview

Next:  an algorithm that is based on scaling excesses 

rather than capacities.

Based on preflow-push

At the Δ-scaling phases, all excesses are less than Δ.
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A Review of Preflows

At each intermediate stages we permit more flow 
arriving at nodes than leaving (except for s)

A preflow is a function  x: A → R  s.t.  0 ≤ x ≤ u  and 
such that 

e(i) =   ∑j∈N xji - ∑j∈N xij ≥ 0,  
for all i ∈ N – {s, t}.

i.e.,  e(i) =  excess at i = net excess flow into node i.
The excess is required to be nonnegative.  
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A Feasible Preflow

The excess e(j) at each node j ≠ s, t is the flow in minus 

the flow out.
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Note:  total excess = flow out of s minus flow into t.
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Distance Labels

Distance labels d( ) are valid for G(x) if

i.  d(t) = 0

ii.  d(i) ≤ d(j) + 1 for each (i,j) ∈ G(x)

Defn. An arc (i, j) is admissible if rij > 0  
and d(i) = d(j) + 1. 

Lemma. Let d( ) be a valid distance label.  Then 
d(i) is a lower bound on the distance from i to t in 
the residual network.

i t

P = the shortest path from i to t in G(x)

d( ) 01234 23



11

Distance labels and gaps

We say that there is a gap at a distance level k (0 < k < n) if 

there is no node with distance label k.

Lemma. Suppose there is a gap at distance level k.  Then 

for any node j with d(j) > k, there is no path from j to t in 

the residual network.

Proof. The shortest path from j to t would have to pass 

through a node whose distance level is k.

i t

P = the shortest path from i to t in G(x)

d( ) 01234 23
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Active nodes in the residual network

A node j in G\{s} is active if:

• e(j) > 0 and 

• there is no gap at a distance level less than d(j)

The preflow push algorithm will push flow from active 

nodes “towards the sink”, relying on d( ).
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Goldberg-Tarjan Preflow Push Algorithm

Procedure Preprocess

x :=0;

compute the exact distance labels d(i) for each node;

xsj := usj for each arc (s, j) ∈ A(s);   d(s) := n;

Algorithm PREFLOW-PUSH;

preprocess;

while there is an active node  i  do 

select an active node i;

push/relabel(i);

convert the max preflow into a max flow

Note:  the “while loop” ends when there are no active 

nodes; i.e., if e(j) > 0, then d(j) is above a gap.
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The Excess Scaling Algorithm

 A preflow x is called Δ-
maximum if e(j) < Δ 
for all j ≠ s, t.

 Note.  If Δ ≥ U, then the preflow 
after the preprocess step is Δ-
maximum.

 If a preflow is 1-maximum and 
if d(s) = n, then the preflow is a 
maximum flow.

 Subroutine 
ImproveApprox(x,Δ):  takes a 
preflow x that is  -maximum 
and outputs a preflow that is 
/2-maximum.

Excess Scaling 

Algorithm

Δ := 2K where K = ⎡ log U ⎤

Preprocess

while Δ > 1 do

y := ImproveApprox(x, Δ)

x := y

Δ := Δ/2

convert the maximum 

preflow x into a maximum 

flow      
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Improve Approx

We say that a node is Δ-active if

1. e(i) ≥ Δ

2. node i is not above a gap  If a node i is above a gap, 

then there is no path from i to t in G(x). 

Subroutine ImproveApprox(x,Δ)

while the G(x) has a Δ/2-active node j do

among Δ/2-active nodes, choose i with 

minimum distance label

perform push/relabel(i) where the amount 

pushed in (i, j) is min (Δ/2, rij)
4
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Δ = 64

Send 2 units of flow in 

(7, 4).  Then send 32 

units of flow in (7, 5) 
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Lemmas about pushing

Lemma 1. Throughout ImproveApprox, e(j) < Δ for all 

active nodes j.

Proof. If we push in (i, j), then e(j) < Δ/2 before the 

push, and the amount pushed is at most Δ/2. 
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Send 2 units of flow in 

(7, 4).  Then send 32 

units of flow in (7, 5) 

Lemma 2. Each non-saturating 

push sends exactly Δ/2 units 

of flow.

Proof. The amount pushed in 

(i, j) is  min (Δ/2, rij).



Analysis of the Excess Scaling Algorithm

Theorem. The Excess Scaling Algorithm finds a 

maximum flow in O(nm + n2 log U) steps.

Proof. We have already shown the following in the 

analysis of preflow-push algorithms.

1. If it terminates, it terminates with a max flow

2. The time spent in all steps other than 

nonsaturating pushes is O(nm).

3. What remains to be proved:  

• A Δ/2-active node with lowest distance label can be 

selected in O(1) steps.  

• The number of nonsaturating pushes is O(n2 log U).   

For this we will rely on a new potential function.

17
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Selecting Δ-active nodes efficiently
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It’s more challenging than one might guess.

LIST is an array of size n.

LIST(k) points to a linked 

list of nodes i with d(i) = k, 

and e(k) ≥ Δ/2 
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Selecting Δ-active nodes efficiently
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If Ψk+1 < Ψk, then the push at the k-th iteration 

created a Δ-active node at level Ψk+1 = Ψk -1. 

It takes O(1) steps to identify Ψk+1 .

View Ψk as a potential function.  

Let δk = Ψk+1 – Ψk.

Then δk ≥ -1.

Losses in potential  =  

Initial Potential + 

+  Gains in potential 

- Final potential 

Maintain a pointer to LIST.   Let Ψk be the index 

of LIST pointed to at an iteration k. 

If Ψk+1 > Ψk, then it takes O(Ψk+1 - Ψk) steps to 

identify Ψk+1 .
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Selecting Δ-active nodes efficiently
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Each loss in Ψ is exactly 1, and it occurs 

following a push.   So, the losses in Ψ are at 

most the number of pushes.  

Gains in Ψ =  Final Ψ  +  Losses in Ψ – Initial Ψ

Gains in Ψ ≤

n +  number of pushes   

The time spent scanning list = 

O(Gains in Ψ + Losses in Ψ)

The time spent scanning list = 

O(n + number of pushes)
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A potential function for bounding NSAT
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Φ = ∑j∈N e(j) d(j) / Δ

node 2 3 4 5 6 7 8 9

e(j) 4 0 1 0 5 35 55 40

e(j)d(j) 8 0 1 0 20 70 165 120

Φ = 384  / 64 = 6

The potential is the “gravitational 
potential” measured in units of Δ

Losses in Φ = Φ0  +  Gains in Φ - Φf



22

What if the k-th iteration is a push?

Every push decreases Φ

δk = Φk+1 - Φk = [ ek+1(i) dk+1(i)  +  ek+1(j) dk+1(j)

- ek(i)  dk(i)   - ek(j) dk(j) ] / Δ

A Nonsat push at step k sends Δ/2 units of flow.  
In this case, δk = - ½. 

dk(u) = dk(v) + 1

Φk = ∑j∈N ek(j) dk(j) / Δ

Suppose that α units of 
flow are sent in (i, j) at 
the k-th iteration. 

j

i

before 
step k 

ek(i)

after      
step  k   

j

i

ek(j)

ek+1(i) =
ek(i) - α

ek+1(j) =
ek(j) + α

=   [ - α dk(i)   + α dk(j) ] /Δ =  - α / Δ.
dk( ) = dk+1( 
)
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What if the k-th iteration is a relabel?

Every relabel increases Φ.

δk = Φk+1 - Φk =   [ ek+1(j) dk+1(j)  - ek (j) dk(j) ]/ Δ

=   [ ek (j) (dk(j) +w)  - ek (j) dk(j) ]/ Δ

Increasing d(j) by w, increases Φ by at most w.

Φk = ∑j∈N ek(j) dk(j) / Δ

Suppose that dk+1(j) = dk(j) + 
w. After step  k   

j ek+1(j) = 
ek(j)

dk+1(j) =
dk(j) + w

=   ek(j) w /Δ ≤ w

j

Before step k 

ek(j
)

dk(j)



Bounding NSAT

NSAT(Δ)/2  ≤ n2 +  n2 - 0  = O(n2)     

Φk = ∑j∈N ek(j) dk(j) / Δ

Theorem.   The total number of nonsaturating pushes 
over all scaling phases is O(n2 log U). 
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NSAT(Δ)/2  ≤ Losses in Φ =  Φ0  +  Gains in Φ - Φf

NSAT(Δ) = number of nonsat pushes in Δ-scaling phase 



You are entitled to receive something if you bring a 

raccoon’s head to the town hall in Henniker, NH. What is it?

$10.

In 1980, a Las Vegas hospital suspended workers because 

of what they were betting on.  What was it?

They were betting when patients would die.

In what year did Christians begin celebrating December 25 

as Jesus Christ’s birthday?

440 C.E. 

Mental Break
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The NERF ball is a popular children’s toy.  

What does NERF stand for?

Nothing.

In advertising displays that include a 

clock, what time is most frequently given?

10:10.

Babe Ruth kept something under his hat to 

keep cool.  What was it?

A cabbage leaf.  He changed it every 2 

innings.

Mental Break
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Highest Level Pushing

The highest level pushing algorithm refers to the 

special case of the Goldberg-Tarjan preflow push 

algorithm in which pushes are from an active node 

with maximum distance label.

Theorem. The running time of the highest level 

pushing algorithm is O(n2m.5).

Note:  Selecting an active node with highest distance 

level is carried out similarly to selecting a Δ-active 

node at the lowest level. 

It remains to prove that the number of nonsaturating 

pushes is O(n2m.5).  

• The analysis is involved, but it is much easier than the 

analysis in the text.
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Phases

A phase consists of a consecutive sequence of pushes 

from nodes at the same level.

Theorem.  The number of phases is O(n2).
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Proof. Let Γ be the highest level of an active node.  It is a 

potential function.  A phase ends  in one of two ways:

1. Γ increases (because of a 

relabel)

2. Γ decreases (no more active 

nodes at level w ) 

Γ increases at most n2 .  (bound on relabels)

Decreases in Γ  = Γ0 + Increases in Γ  - Γf

≤  n          + n2 – 0   =  n2

Conclusion:   there are O(n2) phases.



A potential function for highest level pushing.
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Φ(j) is the number of active 

nodes i with d(i) ≥ d(j).

Nodes 7, 8, 9, and 11 are 

active.

10 e.g., Φ(6) = 0, Φ(10) = 1

Φ(3) = 3, Φ(2) = 4

Φ = ∑j∈N Φ(j) 

Φ = 0 + 1 +3 + 4×4 = 20 



The effect of a node becoming active
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Φ(j) increases by 1 if d(j) ≤ d(i).

Suppose that node i is made 

active.

10
Conclusion:  if a node is made 

active and if there are no other 

changes in potential, then Φ 

increases by less than n.



Bounds on δk

Consider the case that the k-th step is a saturating 

push in arc (u,v).

lowest possible 

Φ before step k 

v

u ek(u) > 0

ek(v) = 0

δk = Φk+1 – Φk <  n

dk+1 = dk
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Φk(j) is the number of active nodes i with d(i) ≥ d(j).

Φk = ∑j∈N Φk(j)

highest possible 

Φ after step k 

v

u ek+1(u) > 0

ek+1(v) > 0
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Bounds on δk

Consider the case that the k-th step is a non-

saturating push in arc (u,v).

u ek(u) > 0

δk = Φk+1 – Φk ≤  - | S |

0

w-1

2

1

t

w u
u ek+1(u) = 0

Let S be the set of nodes at level d(u) = w

v

S

for j ∈ S, Φk+1(j) = Φk(j) - 1  

for j ∉ S, Φk+1(j) ≤ Φk(j)
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Bounds on δk

Consider the case that the k-th step is a relabel of u.

u ek(u) > 0

δk = Φk+1 – Φk < n

0

w

2

1

t

w+1
u ek+1(u) = 0

for j ∈ N, Φk+1(j) ≤ Φk(j) + 1  w-1
u
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Bounding NSAT

Losses in Φ  =   Φ0 +   Gains in Φ      - Φf

≤   n2 +    n2m  + n3          - 0 = O(n2m)

We say that a phase is large if it has at least K 

nonsaturating pushes.  Otherwise, it is small.  The number 

of nonsaturating pushes is NSAT-large + NSAT-small.

NSAT-small  ≤ K × number of phases = O(Kn2)

NSAT-large × K  ≤ Losses      =   O(n2m)

NSAT-large         ≤ Losses/K  =   O(n2m/K) 

Choose K = m.5.  

Then NSAT = O(Kn2 + n2m/K) = O(n2m.5).
34
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Review of Lecture

Scaling techniques are useful when it is quicker to 

solve an optimization problem starting from the 

optimal solution of a closely related problem.

• capacity scaling 

• excess scaling

Potential functions are useful when the total running 

time is less than the bounds obtained by adding up 

running times bounds for each step.  It permits a 

kind of global analysis.

• time to select active nodes in excess scaling

• NSAT pushes for excess scaling

• number of phases for highest level pushing alg.

• NSAT pushes for highest level pushing alg.
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