
15.082J and 6.855J and ESD.78J

October 21, 2010

Max Flows 4

2

Overview of today’s lecture

 Scaling Algorithms

 Potential function analysis

 The Excess Scaling Algorithm

 O(n2 log U) non-saturating pushes,

where U = 1 + max{uij : (i, j) ∈ A}

 O(nm + n2 log U) running time.

 A proof that Highest Level Preflow Push uses

O(n2m1/2) non-saturating pushes.

Scaling Algorithms

3

Generic Scaling

Algorithm

Δ := 2K for some selected

value K

determine a Δ-optimal

solution x

while Δ > 1 do

y := ImproveApprox(x, Δ)

x := y

Δ := Δ/2

1. Define a concept called Δ-

optimal, where Δ is some

positive integer, and where a

1-optimal solution is optimal

for the original problem.

2. Develop a subroutine that

efficiently determines Δ0-

optimum solution where

Δ0 is some (possibly large)

power of 2

3. Develop a subroutine

Improve-Approx that

transforms a Δ-optimal

solution into a Δ/2-optimal

solution.

4

The Capacity Scaling Algorithm

 A flow x is called Δ-maximum if there is no augmenting
path in G(x) of capacity  or more.

 Note. If Δ ≥ U, then x = 0 is Δ-maximum.
U = 1 + max {uij : (i, j) ∈ A}

 Subroutine ImproveApprox(x,Δ): takes a flow that is
-maximum and outputs a flow that is /2-maximum.

 We refer to a path in G(x) as a Δ-augmenting if it is an s-t
path whose capacity is at least Δ.

ImproveApprox(x,Δ)

while there is a Δ/2-augmenting path in G(x) do

find a Δ/2-augmenting path P in G(x);

augment flow along P;

update residual capacities and data structures;

5

Analysis of Capacity Scaling

1 2

3

4 5

6

7

8

10

30
525

54
10

20

15

5

6

9
s t

Lemma. At the beginning of the Δ-scaling phase, there is a an s-t

cut (S, T) such that the capacity of each arc (i, j) from S to T is

less than Δ. S = { j : there is a path P of capacity ≥ Δ from s to j}

The residual capacity of (S, T) is less than mΔ.

Δ = 10

6

Analysis of Capacity Scaling

Corollary. The number of augmentations per scaling phase is

at most 2m.

Proof. Each augmentation reduces the residual capacity of

the cut by at least Δ/2.

Lemma. The number of times that ImproveApprox is called is

at most ⎡log U⎤

Proof. Initially Δ = 2K, where K = ⎡log U⎤

At each subsequent iteration Δ is halved.

The algorithm stops when Δ = 1.

The running time per scaling phase is O(m2).

The total running time is O(m2 log U)

The running time can be improved to O(nm log U)

A preview

Next: an algorithm that is based on scaling excesses

rather than capacities.

Based on preflow-push

At the Δ-scaling phases, all excesses are less than Δ.

7

8

A Review of Preflows

At each intermediate stages we permit more flow
arriving at nodes than leaving (except for s)

A preflow is a function x: A → R s.t. 0 ≤ x ≤ u and
such that

e(i) = ∑j∈N xji - ∑j∈N xij ≥ 0,
for all i ∈ N – {s, t}.

i.e., e(i) = excess at i = net excess flow into node i.
The excess is required to be nonnegative.

9

A Feasible Preflow

The excess e(j) at each node j ≠ s, t is the flow in minus

the flow out.

s

3

4

2 5

t

3

3

3

2

2

2

2

1

2

1

0

0

Note: total excess = flow out of s minus flow into t.

10

Distance Labels

Distance labels d() are valid for G(x) if

i. d(t) = 0

ii. d(i) ≤ d(j) + 1 for each (i,j) ∈ G(x)

Defn. An arc (i, j) is admissible if rij > 0
and d(i) = d(j) + 1.

Lemma. Let d() be a valid distance label. Then
d(i) is a lower bound on the distance from i to t in
the residual network.

i t

P = the shortest path from i to t in G(x)

d() 01234 23

11

Distance labels and gaps

We say that there is a gap at a distance level k (0 < k < n) if

there is no node with distance label k.

Lemma. Suppose there is a gap at distance level k. Then

for any node j with d(j) > k, there is no path from j to t in

the residual network.

Proof. The shortest path from j to t would have to pass

through a node whose distance level is k.

i t

P = the shortest path from i to t in G(x)

d() 01234 23

12

Active nodes in the residual network

A node j in G\{s} is active if:

• e(j) > 0 and

• there is no gap at a distance level less than d(j)

The preflow push algorithm will push flow from active

nodes “towards the sink”, relying on d().

6

3

1

2 1

0

2

1

0

4

2

7

s t

k d() = k

w e() = w

13

Goldberg-Tarjan Preflow Push Algorithm

Procedure Preprocess

x :=0;

compute the exact distance labels d(i) for each node;

xsj := usj for each arc (s, j) ∈ A(s); d(s) := n;

Algorithm PREFLOW-PUSH;

preprocess;

while there is an active node i do

select an active node i;

push/relabel(i);

convert the max preflow into a max flow

Note: the “while loop” ends when there are no active

nodes; i.e., if e(j) > 0, then d(j) is above a gap.

14

The Excess Scaling Algorithm

 A preflow x is called Δ-
maximum if e(j) < Δ
for all j ≠ s, t.

 Note. If Δ ≥ U, then the preflow
after the preprocess step is Δ-
maximum.

 If a preflow is 1-maximum and
if d(s) = n, then the preflow is a
maximum flow.

 Subroutine
ImproveApprox(x,Δ): takes a
preflow x that is -maximum
and outputs a preflow that is
/2-maximum.

Excess Scaling

Algorithm

Δ := 2K where K = ⎡ log U ⎤

Preprocess

while Δ > 1 do

y := ImproveApprox(x, Δ)

x := y

Δ := Δ/2

convert the maximum

preflow x into a maximum

flow

15

Improve Approx

We say that a node is Δ-active if

1. e(i) ≥ Δ

2. node i is not above a gap If a node i is above a gap,

then there is no path from i to t in G(x).

Subroutine ImproveApprox(x,Δ)

while the G(x) has a Δ/2-active node j do

among Δ/2-active nodes, choose i with

minimum distance label

perform push/relabel(i) where the amount

pushed in (i, j) is min (Δ/2, rij)
4

7

5

62

0 30

2 40

Δ = 64

Send 2 units of flow in

(7, 4). Then send 32

units of flow in (7, 5)

16

Lemmas about pushing

Lemma 1. Throughout ImproveApprox, e(j) < Δ for all

active nodes j.

Proof. If we push in (i, j), then e(j) < Δ/2 before the

push, and the amount pushed is at most Δ/2.

4

7

5

62

0 30

2 40

Δ = 64

Send 2 units of flow in

(7, 4). Then send 32

units of flow in (7, 5)

Lemma 2. Each non-saturating

push sends exactly Δ/2 units

of flow.

Proof. The amount pushed in

(i, j) is min (Δ/2, rij).

Analysis of the Excess Scaling Algorithm

Theorem. The Excess Scaling Algorithm finds a

maximum flow in O(nm + n2 log U) steps.

Proof. We have already shown the following in the

analysis of preflow-push algorithms.

1. If it terminates, it terminates with a max flow

2. The time spent in all steps other than

nonsaturating pushes is O(nm).

3. What remains to be proved:

• A Δ/2-active node with lowest distance label can be

selected in O(1) steps.

• The number of nonsaturating pushes is O(n2 log U).

For this we will rely on a new potential function.

17

18

Selecting Δ-active nodes efficiently

0

5

4

3

2

1

t

4 5

s2 s

s

5

7

9

8

7

6

9

6

3 8

5

10

LIST

7

6

5

4

3

2

1

0

7

9 8

It’s more challenging than one might guess.

LIST is an array of size n.

LIST(k) points to a linked

list of nodes i with d(i) = k,

and e(k) ≥ Δ/2

19

Selecting Δ-active nodes efficiently

LIST

7

6

5

4

3

2

1

0

7

9 8

If Ψk+1 < Ψk, then the push at the k-th iteration

created a Δ-active node at level Ψk+1 = Ψk -1.

It takes O(1) steps to identify Ψk+1 .

View Ψk as a potential function.

Let δk = Ψk+1 – Ψk.

Then δk ≥ -1.

Losses in potential =

Initial Potential +

+ Gains in potential

- Final potential

Maintain a pointer to LIST. Let Ψk be the index

of LIST pointed to at an iteration k.

If Ψk+1 > Ψk, then it takes O(Ψk+1 - Ψk) steps to

identify Ψk+1 .

20

Selecting Δ-active nodes efficiently

LIST

7

6

5

4

3

2

1

0

7

9 8

Each loss in Ψ is exactly 1, and it occurs

following a push. So, the losses in Ψ are at

most the number of pushes.

Gains in Ψ = Final Ψ + Losses in Ψ – Initial Ψ

Gains in Ψ ≤

n + number of pushes

The time spent scanning list =

O(Gains in Ψ + Losses in Ψ)

The time spent scanning list =

O(n + number of pushes)

21

A potential function for bounding NSAT

0

5

4

3

2

1
t
4

s2 s

s

7

9

8

7

6

9

6

3 8

5

Φ = ∑j∈N e(j) d(j) / Δ

node 2 3 4 5 6 7 8 9

e(j) 4 0 1 0 5 35 55 40

e(j)d(j) 8 0 1 0 20 70 165 120

Φ = 384 / 64 = 6

The potential is the “gravitational
potential” measured in units of Δ

Losses in Φ = Φ0 + Gains in Φ - Φf

22

What if the k-th iteration is a push?

Every push decreases Φ

δk = Φk+1 - Φk = [ek+1(i) dk+1(i) + ek+1(j) dk+1(j)

- ek(i) dk(i) - ek(j) dk(j)] / Δ

A Nonsat push at step k sends Δ/2 units of flow.
In this case, δk = - ½.

dk(u) = dk(v) + 1

Φk = ∑j∈N ek(j) dk(j) / Δ

Suppose that α units of
flow are sent in (i, j) at
the k-th iteration.

j

i

before
step k

ek(i)

after
step k

j

i

ek(j)

ek+1(i) =
ek(i) - α

ek+1(j) =
ek(j) + α

= [- α dk(i) + α dk(j)] /Δ = - α / Δ.
dk() = dk+1(
)

23

What if the k-th iteration is a relabel?

Every relabel increases Φ.

δk = Φk+1 - Φk = [ek+1(j) dk+1(j) - ek (j) dk(j)]/ Δ

= [ek (j) (dk(j) +w) - ek (j) dk(j)]/ Δ

Increasing d(j) by w, increases Φ by at most w.

Φk = ∑j∈N ek(j) dk(j) / Δ

Suppose that dk+1(j) = dk(j) +
w. After step k

j ek+1(j) =
ek(j)

dk+1(j) =
dk(j) + w

= ek(j) w /Δ ≤ w

j

Before step k

ek(j
)

dk(j)

Bounding NSAT

NSAT(Δ)/2 ≤ n2 + n2 - 0 = O(n2)

Φk = ∑j∈N ek(j) dk(j) / Δ

Theorem. The total number of nonsaturating pushes
over all scaling phases is O(n2 log U).

24

NSAT(Δ)/2 ≤ Losses in Φ = Φ0 + Gains in Φ - Φf

NSAT(Δ) = number of nonsat pushes in Δ-scaling phase

You are entitled to receive something if you bring a

raccoon’s head to the town hall in Henniker, NH. What is it?

$10.

In 1980, a Las Vegas hospital suspended workers because

of what they were betting on. What was it?

They were betting when patients would die.

In what year did Christians begin celebrating December 25

as Jesus Christ’s birthday?

440 C.E.

Mental Break

25

The NERF ball is a popular children’s toy.

What does NERF stand for?

Nothing.

In advertising displays that include a

clock, what time is most frequently given?

10:10.

Babe Ruth kept something under his hat to

keep cool. What was it?

A cabbage leaf. He changed it every 2

innings.

Mental Break

26

Highest Level Pushing

The highest level pushing algorithm refers to the

special case of the Goldberg-Tarjan preflow push

algorithm in which pushes are from an active node

with maximum distance label.

Theorem. The running time of the highest level

pushing algorithm is O(n2m.5).

Note: Selecting an active node with highest distance

level is carried out similarly to selecting a Δ-active

node at the lowest level.

It remains to prove that the number of nonsaturating

pushes is O(n2m.5).

• The analysis is involved, but it is much easier than the

analysis in the text.
27

Phases

A phase consists of a consecutive sequence of pushes

from nodes at the same level.

Theorem. The number of phases is O(n2).

28
0

w-1

2

1

t

w

Proof. Let Γ be the highest level of an active node. It is a

potential function. A phase ends in one of two ways:

1. Γ increases (because of a

relabel)

2. Γ decreases (no more active

nodes at level w)

Γ increases at most n2 . (bound on relabels)

Decreases in Γ = Γ0 + Increases in Γ - Γf

≤ n + n2 – 0 = n2

Conclusion: there are O(n2) phases.

A potential function for highest level pushing.

29
0

5

4

3

2

1

t

4

27

7

6

9

6

38

5

11

Active

Not active

Φ(j) is the number of active

nodes i with d(i) ≥ d(j).

Nodes 7, 8, 9, and 11 are

active.

10 e.g., Φ(6) = 0, Φ(10) = 1

Φ(3) = 3, Φ(2) = 4

Φ = ∑j∈N Φ(j)

Φ = 0 + 1 +3 + 4×4 = 20

The effect of a node becoming active

30
0

5

4

3

2

1

t

4

27

7

6

9

6

38

5

11

Active

Not active

Φ(j) increases by 1 if d(j) ≤ d(i).

Suppose that node i is made

active.

10
Conclusion: if a node is made

active and if there are no other

changes in potential, then Φ

increases by less than n.

Bounds on δk

Consider the case that the k-th step is a saturating

push in arc (u,v).

lowest possible

Φ before step k

v

u ek(u) > 0

ek(v) = 0

δk = Φk+1 – Φk < n

dk+1 = dk

0

5

4

3

2

1

t

4

27

6

9

6

38

5

11 10

Φk(j) is the number of active nodes i with d(i) ≥ d(j).

Φk = ∑j∈N Φk(j)

highest possible

Φ after step k

v

u ek+1(u) > 0

ek+1(v) > 0

31

Bounds on δk

Consider the case that the k-th step is a non-

saturating push in arc (u,v).

u ek(u) > 0

δk = Φk+1 – Φk ≤ - | S |

0

w-1

2

1

t

w u
u ek+1(u) = 0

Let S be the set of nodes at level d(u) = w

v

S

for j ∈ S, Φk+1(j) = Φk(j) - 1

for j ∉ S, Φk+1(j) ≤ Φk(j)

32

Bounds on δk

Consider the case that the k-th step is a relabel of u.

u ek(u) > 0

δk = Φk+1 – Φk < n

0

w

2

1

t

w+1
u ek+1(u) = 0

for j ∈ N, Φk+1(j) ≤ Φk(j) + 1 w-1
u

33

Bounding NSAT

Losses in Φ = Φ0 + Gains in Φ - Φf

≤ n2 + n2m + n3 - 0 = O(n2m)

We say that a phase is large if it has at least K

nonsaturating pushes. Otherwise, it is small. The number

of nonsaturating pushes is NSAT-large + NSAT-small.

NSAT-small ≤ K × number of phases = O(Kn2)

NSAT-large × K ≤ Losses = O(n2m)

NSAT-large ≤ Losses/K = O(n2m/K)

Choose K = m.5.

Then NSAT = O(Kn2 + n2m/K) = O(n2m.5).
34

35

Review of Lecture

Scaling techniques are useful when it is quicker to

solve an optimization problem starting from the

optimal solution of a closely related problem.

• capacity scaling

• excess scaling

Potential functions are useful when the total running

time is less than the bounds obtained by adding up

running times bounds for each step. It permits a

kind of global analysis.

• time to select active nodes in excess scaling

• NSAT pushes for excess scaling

• number of phases for highest level pushing alg.

• NSAT pushes for highest level pushing alg.

MIT OpenCourseWare
http://ocw.mit.edu

15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

