
15.082J & 6.855J & ESD.78J

October 14, 2010

Maximum Flows 2

2

Review of the Ford-Fulkerson Algorithm

x := 0;

create the residual network G(x);

while there is some directed path from s to t in G(x) do

let P be a path from s to t in G(x);

* := (P);

send * units of flow along P;

update the r's;

Max-Flow Min-Cut. Let x* be the final flow with flow value v*.

Let S* = {j ∈ N : s ➔ j in G(x*)}. Let T* = N\S*.

Then x* is a max flow, and (S*, T*) is a minimum cut,

and v* = CAP(S*, T*)

Overview of this lecture

1. Applications of max flow and min cut

2. Speedups of the max flow augmenting path

algorithm

3

4

Matchings

An undirected network
G = (N, A) is bipartite if N
can be partitioned into N1

and N2 so that for every
arc (i,j), i ∈ N1 and j ∈ N2.

A matching in N is a set
of arcs no two of which
are incident to a
common node.

Matching Problem: Find
a matching of maximum
cardinality

1

2

3

4

5

6

7

8

9

10

Persons Tasks

5

Node Covers

A node cover is a subset
S of nodes such that each
arc of G is incident to a
node of S.

Node Cover Problem:
Find a node cover of
minimum cardinality.

1

2

3

4

5

6

7

8

9

10

Persons Tasks

2

5

6

8

Matching Duality Theorem

6

Theorem. König-
Egerváry. The maximum
cardinality of a matching
is equal to the minimum
cardinality of a node
cover. (Proof in 4 slides)

Note. Every node cover
has at least as many
nodes as any matching
because each matched
edge is incident to a
different node of the
node cover.

1

2

3

4

5

6

7

8

9

10

Persons Tasks

2

5

6

8

How to find a minimum node cover

7

INPUT:

original problem

Transform into a

max flow problem

Solve the max

flow problem

Find the

minimum cut

Use the cut to find the

minimum node cover

8

Solving the Matching Problem as a

Max Flow Problem

1

2

3

4

5

6

7

8

9

10

s t

Each arc (s, i) has a capacity of 1.

Each arc (j, t) has a capacity of 1.

Replace original

arcs by directed

arcs with infinite

capacity.

9

Find a max flow

1

2

3

4

5

6

7

8

9

10

s t

The maximum s-t flow is 4.

The max matching has cardinality 4.

10

Determine the minimum cut

1

2

3

4

5

6

7

8

9

10

s t

S = {s, 1, 3, 4, 6, 8}. T = {2, 5, 7, 9, 10, t}.

There is no arc from {1, 3, 4} to {7, 9, 10} or from {6, 8} to

{2, 5}. Any such arc would have an infinite capacity.

1

3

4

6

8s

11

Find the min node cover

1

2

3

4

5

6

7

8

9

10

s t

The minimum node cover is the set of nodes incident to

the arcs across the cut. Max-Flow Min-Cut implies the

duality theorem for matching.

1

3

4

6

8s

2

5

6

8ss t

12

Philip Hall’s Theorem

1

2

3

4

5

6

7

8

9

10

Theorem. Hall’s Theorem. If there is no perfect matching,

then there is a set S of nodes of N1 such that |S| > |T|

where T are the nodes of N2 adjacent to S.

1

3

4

6

8

2

5

6

8

1

3

4

6

8

Generalization of Hall’s Theorem:

Feasibility for min cost flows

Let G = (N, A) be a network

• bj = supply/demand for node i. ∑i bi = 0.

• uij = upper bound on flow in (i, j)

• assume that all lower bounds are 0

13

Theorem: Either there is a feasible flow in G or

else there is a subset S of nodes such that

∑i∈S bi > CAP(S, T).

S T T = N\S

14

Network Reliability

 Communication Network

 What is the maximum number of arc disjoint

paths from s to t?

 How can we determine this number?

Theorem. Let G = (N,A) be a directed graph. Then

the maximum number of arc-disjoint paths from s

to t is equal to the minimum number of arcs upon

whose deletion there is no directed s-t path.

15

There are 3 arc-disjoint s-t paths

s t

1

2

3

4

5

6

7

8

9

10

11

12

16

Deleting 3 arcs disconnects s and t

t

1

2

5

6

7

9

10

11

12

s

3

4 8

Let S = {s, 3, 4, 8}. The only arcs from S to

T = N\S are the 3 deleted arcs.

17

Node disjoint paths

Two s-t paths P and P' f are said to be node-
disjoint if the only nodes in common to P and P'
are s and t).

How can one determine the maximum number of
node disjoint s-t paths?

Answer: node splitting

Theorem. Let G = (N,A) be a network with no arc
from s to t. The maximum number of node-
disjoint paths from s to t equals the minimum
number of nodes in N\{s,t} whose removal from G
disconnects all paths from nodes s to node t.

18

There are 2 node disjoint s-t paths.

s t

1

2

3

4

5

6

7

8

9

10

11

12

19

Deleting 5 and 6 disconnects t from s.

t

7

9

10

11

12

5

6

s

1

2

3

4 8

Let S = {s, 1, 2, 3, 4, 8}

Let T = {7, 9, 10, 11, 12, t}

There is no arc directed

from S to T.

Mental Break

What did ancient Egyptians shave to mourn the death of

their cats?

Their eyebrows.

In what country are the ruins of Troy located?

Turkey

At the height of its power (around 400 BCE), Sparta had

25,000 citizens. How many slaves did it have?

500,000.

In ancient Rome, being born with a crooked nose was

considered a sign. What was it a sign of?

Leadership.

The Roman emperor Caligula gave a special honor to his

horse. What was the honor?

He made his horse a senator.

How long did it take for the great wall of China to be built.

Around 1900 years. From 5th century BC to the 16th

century. The wall is around 3900 miles long. It is not visible

to the human eye from space.

Mental Break

Speedups of the augmenting path algorithm

1. Shortest augmenting path algorithm: always

augment along the path in G(x) with the fewest

number of arcs.-

2. Largest augmenting path algorithm: always

augment along a path in G(x) with the greatest

capacity.

22

The shortest augmenting path algorithm

x := 0;

create the residual network G(x);

while there is some directed path from s to t in G(x) do

let P be a path from s to t in G(x) with the fewest number of arcs;

* := (P);

send * units of flow along P;

update the r's;

23

Theorem. The shortest augmenting path algorithm

determines a maximum flow in O(nm) augmentations.

This algorithm can be implemented to run in O(n2m)

time.

Distance Labels: Let d(i) be the length of

the shortest path from i to t in G(x)

24

1

2

3

4

5

6

7

8

s t0

1

1

2

2

3

3

4

44

FACT 1: If (i, j)∈ G(x), then d(i) ≤ d(j) + 1.

FACT 2: Arc (i, j) is on a shortest path from i to t

if and only if d(i) = d(j) + 1.

FACT 3: d(t) = 0; d(i) < n for all i s.t. i ➔ t in G(x).

Valid Arcs and Saturating Pushes

25

An arc (i, j) ∈ G(x)

is valid if

d(i) = d(j) + 1.

22

2

422

11

1

2

1

1

s

2

4

5

3

t02

2

1

1

1

2

12

3

1

1

2

3

123

01

2

FACT: If P is an

augmenting path,

then every arc of

P is valid.

Suppose δ units of flow are sent along P. The

augmentation saturates arc (i, j) ∈ P if rij = δ.

The number of augmenting paths

Theorem. The number of augmenting paths for the

shortest augmenting path algorithm is O(nm).

26

Fact. In every augmenting path, at least one arc

(i, j) is saturated.

Proof of theorem. Let aij be the number of times that

arc (i, j) is saturated. Let A be the number of

augmentations.

Then A ≤ ∑(i,j)∈A 2aij ≤ ∑(i,j)∈A n ≤ nm.

Lemma 1. Arc (i, j) and its reversal (j, i) can be

saturated at most n/2 times each. (To be proved

later.)

Proof of Lemma 1. Each arc (i, j) is

saturated fewer than n times.

Lemma 2. Let d be the distance labels an iteration

where arc (i, j) is saturated. Suppose that d’ is the

vector of distance labels at a subsequent iteration

where (i, j) is saturated. Then n > d’(i) ≥ d(i) + 2.

(to be proved on next slide).

Proof of Lemma 1 from Lemma 2. Before (i, j) can be

saturated again, its distance label will increase by

at least 2. Since 0 < d(i) < n, the distance label can

increase at most n/2 times.

27

Proof of Lemma 2.

Lemma 3. Let d be the distance labels at some iteration, and let

d’ be the distance labels at a subsequent iteration.

Then d’(i) ≥ d(i) for all i ∈ N. (to be proved on next slide)

28

Proof of Lemma 2 from Lemma 3. Suppose that (i, j) is saturated

when d(i) = k. There is no more flow in (i, j) until flow is sent in

(j, i) at which point the distance label of j is k+1. But flow

cannot be returned in (i, j) until it is valid again, and the distance

label is at least k+2.

ji

k k-1

ji

k k+1

ji

k+2 k+1

Proof of Lemma 3.

Assume that Lemma 3 is false. Let d be the distance

labels at some iteration. Let P be the augmenting

path. After the augmentation, the reversals of arcs in

P are in the residual network. But adding these arcs

to G(x) does not decrease any distance. And deleting

arcs of P cannot decrease a distance label.

29

1

2

3

4

5

6

7

8

s tt

8

7

5

6

3

4

1

2s

Augmenting path:

s-3-5-8-t.

1

2

3

04

Largest Augmenting Path Algorithm

Theorem. (Edmonds-Karp). Suppose that one

augments along the augmentation with the

largest residual capacity. Then the maximum

flow is determined after O(m log U) augmenting

paths.

Running time: The time to find the maximum

augmenting path is O(m log m). (Why?)

Thus the total running time is O(m2 log m log U)

30

Finding the largest augmenting path

Step 1. Sort the capacities in the residual network.

Suppose that sorted capacities are c1, c2, …, c2m.

Step 2. Let Gj(x’) be the residual network as

restricted to arcs with capacity at least cj.

Step 3. Use binary search to find the largest value j

so that there is a path from s to t in Gj(x’).

31

Notation for the proof of the theorem: Let v* be the

maximum flow value out of s. Let vk be the amount of

flow out of s immediately prior to the k-th

augmentation.

Let ak be the capacity of the k-th augmentation.

Lemma 4 and Lemma 5.

Proof of Theorem from Lemma 5. The largest initial

augmentation is at most U.

Then ak ≤ U/2 for some k ≤ 2m.

Then ak ≤ U/4 for some k ≤ 4m.

One can show using induction that

ak < 1 for some k ≤ 2m(⎡log U⎤+1).

But capacities are always integer valued. So, there are at

most 2m (log U+1) augmentations.

32

Lemma 5. For all k, there exists k’ < k + 2m such that ak’ < ak/2.

Lemma 4. For all k, ak ≥ (v* - vk)/m.

Proofs of Lemmas 4 and 5

33

Proof of Lemma 4. Let x’ be the arc flows prior to the k-th

iteration. Then the max flow out of s in G(x’) is (v* - v’).

Let y be the maximum flow in G(x’). The flow

decomposition of y has most m paths from s to t. The

sum of these flows is (v* - v’) and so the maximum of the

capacities of these paths is at least (v* - v’)/m.

Proof of Lemma 5. Suppose that the theorem is false.

Suppose that aj > ak/2 for j = k to k+2m. The total amount

of flow sent from s during these iterations is greater than

2m(ak/2) > v* - vk.

This is impossible, and so the lemma is true.

Geometric convergence arguments

Lemma 5. Suppose that any algorithm for a maximization

problem has objective value vk at iteration k, and let v*

be the optimum value. Suppose there is some positive

integer B such that for all k,

(vk+1 – vk) ≥ (v* - vk)/B. Then for all k:

(vk+2B – vk) > (v* - vk)/2.

34

Proof by contradiction. Let ak = vk+1 – vk. Suppose that

(vk+2B – vk) ≤ (v* - vk)/2. By assumption:

for each j from k to k+2B,

aj = (vj+1 – vj) ≥ (v* - vj)/B ≥ (v* - vk)/2B. Then

v

k2B
 v

k
 a

jj0

2B1

  v
k
 v * v

k 
j0

2B1

 / 2B  v *.

Summary

• Applications of max-flow min-cut

• Analysis of Shortest Augmenting Path Algorithm

• Distance labels

• Analysis of Largest Augmenting Path Algorithm

• Geometric convergence arguments.

35

MIT OpenCourseWare
http://ocw.mit.edu

15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

