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The Max Flow Problem
G = (N,A)
xij = flow on arc (i,j)
uij = capacity of flow in arc (i,j)
s = source node
t = sink node

Maximize v

Subject to ∑j xij - ∑k xki = 0  for each i ≠ s,t

∑j xsj = v

0 ≤ xij ≤ uij for all (i,j) ∈ A.
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Maximum Flows

We refer to a flow x as maximum if it is feasible 

and maximizes v.  Our objective in the max flow 

problem is to find a maximum flow.
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The feasibility problem:  find a feasible flow
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Transformation to a max flow problem
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There is a 1-1 correspondence with flows from s to t 

with 24 units (why 24?) and feasible flows for the 

transportation problem.
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sending flows along s-t paths
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One can find a larger flow from s to t by 

sending 1 unit of flow along the path s-2-t
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A different kind of path
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One could also find a larger flow from s to t by 

sending 1 unit of flow along the path s-2-1-t.  

(Backward arcs have their flow decreased.)
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Decreasing flow in (1, 2) is 

mathematically equivalent 

to sending flow in (2, 1) 

w.r.t. node balance 

constraints.
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The Residual Network
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We let rij denote 

the residual 

capacity of arc (i,j)The Residual Network G(x)
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A Useful Idea:  Augmenting Paths

An augmenting path is a path from s to t in the 

residual network.

The residual capacity of the augmenting path P is 

(P) =  min{rij : (i,j) ∈ P}.

To augment  along P is to send (P) units of flow 

along each arc of the path.  We modify x and the 

residual capacities appropriately.

rij := rij - (P)  and   rji := rji + (P)    for (i,j) ∈ P.
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The Ford Fulkerson Maximum Flow Algorithm

x := 0;

create the residual network G(x);

while there is some directed path from 

s to t in G(x) do

let P be a path from s to t in G(x);

 := (P);

send  units of flow along P; 

update the r's; Ford-

Fulkerson 

Algorithm 

Animation



To prove correctness of the algorithm

Invariant:  at each iteration, there is a feasible flow 

from s to t.
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Finiteness (assuming capacities are integral and finite):

• The residual capacities are always integer valued

• The residual capacities out of node s decrease by at 

least one after each update.

Correctness

• If there is no augmenting path, then the flow must be 

maximum.

• max-flow  min-cut theorem.
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Integrality

Assume that all data are integral.

Lemma:  At each iteration all residual capacities are 

integral.

Proof.  It is true at the beginning.  Assume it is true 

after the first k-1 augmentations, and consider 

augmentation k along path P.  

The residual capacity  of P is the smallest 

residual capacity on P, which is integral.

After updating, we modify residual capacities by 0, 

or , and thus residual capacities stay integral.
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Theorem.  The Ford-Fulkerson Algorithm is finite

Proof.  The capacity of each augmenting path is at 

least 1.  
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rsj decreases for some j. 

So, the sum of the residual capacities of arcs out 

of s decreases at least 1 per iteration.

Number of augmentations is O(nU), where U is the 

largest capacity in the network.
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Mental Break

What are aglets?

The plastic things on the ends of shoelaces.

How fast does the quartz crystal in a watch vibrate?

About 32,000 times per second.

If Barbie (the doll) were life size and 5’ 9” tall, how big 

would her waist be?

18 inches.  Incidentally, Barbie’s full name is Barbara 

Millicent Roberts



True or false.  In Alaska it is illegal to shoot a moose from a 

helicopter or any other flying vehicle.

True.

True or false.  In Athens, Georgia, a driver’s license can be 

taken away by law if the driver is deemed either “unbathed” 

or “poorly dressed.”

False.  However, it is true for Athens, Greece.

In Helsinki, Finland that don’t give parking tickets to illegally 

parked cars.  What do they do instead?

They deflate the tires of the car.

Mental Break
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To be proved:   If there is no augmenting 

path, then the flow is maximum 
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S* = { j : s ➔ j in G(x*)}

T* = N\S*

G(x) = residual 

network for flow x.

If there is a directed path from i 

to j in G, we write  i ➔ j. 

x* = final flow



Lemma:   there is no arc in G(x*) from S* to T*
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S* = { j : s ➔ j in G(x*)}

T* = N\S*

Proof.  If there were such an arc 

(i, j), then j would be in S*.
i

j

s

We will use this Lemma in 6 slides. 
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Cut Duality Theory
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An (s,t)-cut in a network G = (N,A) is a partition of 

N into two disjoint subsets S and T such that s ∈ S 

and t ∈ T, e.g., S = { s, 1 } and T = { 2, t }.

The capacity of a cut (S,T) is  

CAP(S,T) = ∑i∈S∑j∈T  uij



The flow across a cut
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We define the flow across the cut (S,T) to be

Fx(S,T) = ∑i∈S∑j∈T xij - ∑i∈S∑j∈T xji 
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If S = {s, 1}, then 

Fx(S,T)   = 6 + 1 + 8 = 15 

If S = {s, 2}, then 

Fx(S,T)   = 9  - 1 + 7 = 15 



Max Flow Min Cut

20

Theorem. (Max-flow Min-Cut).  The maximum flow 
value is the minimum value of a cut.

Proof. The proof will rely on the following three lemmas:

Lemma 1. For any flow x, and for any s-t cut (S, T), 
the flow out of s equals Fx(S, T). 

Lemma 2. For any flow x, and for any s-t cut (S, T), 
Fx(S, T) ≤ CAP(S, T).  

Lemma 3. Suppose that x* is a feasible s-t flow with 
no augmenting path.  Let S* = {j : s ➔ j in G(x*)} and 
let T* = N\S.  Then Fx*(S*, T*) = CAP(S*, T*).  



Proof of Theorem (using the 3 lemmas)
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Let x’ be a maximum flow  

Let v’ be the maximum flow value 

Let x* be the final flow.

Let v* be the flow out of node s (for x*)

Let S* be nodes reachable in G(x*) from s.

Let T* = N\S*.

2.   v’ = Fx’(S*, T*)                     by Lemma 1.     

Thus all inequalities are equalities and v* = v’.

1.   v* ≤ v’                                  by definition of v’  

3.   Fx’(S*, T*) ≤  CAP(S*, T*)        by Lemma 2.     

4.   v*  =  Fx*(S*, T*) =  CAP(S*, T*)       by Lemmas 1,3.     



22

Proof of Lemma 1

Proof.  Add the conservation of flow constraints for 
each node i ∈ S - {s} to the constraint that the flow 
leaving s is v.  The resulting equality is Fx(S,T) = v.
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xs1 + xs2 = v
x12 + x1t – xs1 = 0

xs2 + x12 + x1t = v

xs1 + xs2 = v
x2t – xs2 – x12 = 0

xs1 - x12 + x2t = v
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Proof of Lemma 2
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CAP(S, T) = 15 CAP(S, T) = 16

Proof. If i ∈ S, and j ∈ T, then xij ≤ uij.  If i ∈ T, and j ∈ S, 

then xij ≥ 0.

Fx(S,T) = ∑i∈S∑j∈T xij - ∑i∈S∑j∈T  xji 

CAP(S,T) = ∑i∈S∑j∈T  uij - ∑i∈S∑j∈T   0
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Proof of Lemma 3.
We have already seen that there is no arc from 

S* to T* in G(x*).

i ∈ S*  and    j ∈ T*    ⇒ x*ij =  uij and x*ji = 0

i j
x*ij =  uij

x*ji = 0
Otherwise, there is 
an arc (i, j) in G(x*)

Therefore Fx*(S*, T*) = CAP(S*, T*)
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Review

Corollary.  If the capacities are finite integers, then the 

Ford-Fulkerson Augmenting Path Algorithm terminates 

in finite time with a maximum flow from s to t.

Corollary.  If the capacities are finite rational numbers, then 

the Ford-Fulkerson Augmenting Path Algorithm 

terminates in finite time with a maximum flow from s to t.  

(why?)

Corollary.  To obtain a minimum cut from a maximum flow 

x*, let S* denote all nodes reachable from s in G(x), and 

T* = N\S*

Remark.  This does not establish finiteness if uij = ∞ or if 

capacities may be irrational.



26

A simple and very bad example
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After 1 augmentation
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After two augmentations

s

1

2

t

M-1 M-1

M-1M-1

1

1

1

1

1



29

After 3 augmentations
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And so on
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After 2M augmentations
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An even worse example

In Exercise 6.48, there is an example that takes an 

infinite number of augmentations on irrational 

data, and does not converge to the correct flow.

But we shall soon see how to solve max flows in a 

polynomial number of operations, even if data 

can be irrational.



33

Summary and Extensions

1.  Augmenting path theorem

2.  Ford-Fulkerson Algorithm

3.  Duality Theory.

4.  Next Lecture:  

• Polynomial time variants of FF algorithm

• Applications of Max-Flow Min-Cut
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