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Overview of the Lecture

 A generic algorithm for solving shortest path 
problems 

 negative costs permitted

 but no negative cost cycle (at least for now)

 The use of reduced costs 

 All pair shortest path problem

 INPUT  G = (N, A) with costs c

 Node 1 is the source node

 There is no negative cost cycle

 We will relax that assumption later
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Optimality Conditions

Lemma. Let d*(j) be the shortest path length from 

node 1 to node j, for each j.  Let d( ) be node labels 

with the following properties:

d(j)  d(i) + cij for i ∈ N   for j ≠ 1. (1)

d(1) = 0. (2)

Then d(j) ≤ d*(j) for each j.

Proof.    Let P be the shortest path from node 1 to 

node j. 
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Completion of the proof.

If P = (1, j), then d(j) ≤ d(1) + c1j = c1j = d*(j).

Suppose |P| > 1, and assume that the result is true for 

paths of length |P| - 1.  Let i be the predecessor of node j 

on P, and let Pi be the subpath of P from 1 to i. 

Pi is the shortest path from node 1 to node i.  So, 

d(i) ≤ d*(i) = c(Pi) by inductive hypothesis.

Then, d(j) ≤ d(i) + cij ≤ c(Pi) + cij = c(P) = d*(j).

1 j

1 i j

Pi

P
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Optimality Conditions

Theorem. Let d(1),  . . . , d(n)   satisfy the following 

properties for a directed graph G = (N,A):

1.  d(1) = 0.

2.  d(i)  is the length of some path from node 1 to node i.

3.  d(j) ≤ d(i) + cij for all (i,j) ∈ A.

Then d(j) = d*(j).

Proof.  d(j) ≤ d*(j) by the previous lemma.  

But, d(j) ≥ d*(j) because d(j) is the length of some path 

from node 1 to node j.  Thus d(j) = d*(j).
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A Generic Shortest Path Algorithm

Notation.

d(j) =  “temporary distance labels”.  

 At each iteration, it is the length of a path (or 

walk) from 1 to j.   

 At the end of the algorithm  d(j) is the minimum 

length of a path from node 1 to node j.

Pred(j) = Predecessor of j in the path of length d(j) 

from node 1 to node j.

cij = length of arc (i,j).
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A Generic Shortest Path Algorithm

Algorithm LABEL CORRECTING;

d(1) : = 0 and Pred(1) := ø;

d(j) : = ∞ for each j ∈ N – {1};

while some arc (i,j) satisfies d(j) > d(i) + cij do

d(j) : = d(i) + cij;

Pred(j) : = i;

Label correcting animation.



Algorithm Invariant

At each iteration, if d(j) < ∞, then d(j) is the length of 

some walk from node 1 to node j.
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Theorem. Suppose all data are integral, and that there are no 

negative cost cycles in the network. Then the label 

correcting algorithm ends after a finite number of steps 

with the optimal solution.  

Proof of correctness. The algorithm invariant ensures that 

d(j) is the length of some walk from node 1 to node j.  If the 

algorithm terminates, then the distances satisfy the 

optimality conditions.

Proof of Finiteness. Consider finite distance labels. At each 

iteration, d(j) decreases by at least one for some j.

Also nC ≥ d(j) ≥ d*(j) > -nC, where C = max (|cij| : (i,j) ∈ A).

So, the number of iterations is O(n2C).
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More on Finiteness

What happens if data are not required to be integral?

The algorithm is still finite, but one needs to use a 

different proof.

What happens if there is a negative cost cycle?  

The algorithm may no longer be finite.  

Possibly, d(j) keeps decreasing to - ∞ .  

But we can stop when d(j) < -nC since this 

guarantees that there is a negative cost cycle.
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On computational complexity

Proving finiteness is OK, but ….

Can we make the algorithm polynomial time?

If so, what is the best running time?

Can we implement it efficiently in practice?
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A Polynomial Time Version of the Label 

Correcting Algorithm

We define a pass to consist of scanning all arcs in A, 

and updating distance labels when d(j) > d(i) + cij.  (We 

permit the arcs to be scanned in any order).

Theorem. If there is no negative cost cycle, then the 

label correcting algorithm determines the shortest path 

distances after at most n-1 passes.  The running time is 

O(nm). 



Proof follows from this lemma

Lemma. Let Pj be a shortest walk from node i to node j.  

(If there are multiple shortest walks, choose one with 

the fewest number of arcs.)  

Let dk(j) be the value d(j) after k passes.

Then dk(j) = d*(j) if Pj has at most k arcs. 
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Note:  if there are no negative cost cycles, then Pj will 

also be a path.  If there is a negative cost cycle 

containing node j, then there is no shortest walk to 

node j.

1 j
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To show: dk(j) = d*(j) whenever that shortest path from 1 

to j  has at most k arcs.

After pass k, dk(j) ≤ dk-1(i) + cij = c(Pi) + cij = d*(j).

Proof of lemma

d1(j) ≤ c1j .  If Pj = (1, j) the lemma is true.  

Suppose |Pj| > 1, and assume that the result is true for 

paths of length |Pj| - 1.  Let i be the predecessor of node j 

on Pj.  Then the subpath from 1 to i is a shortest path to i.

1 j

1 i j

Pi

Pj
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What if there is a negative cost cycle?

If in the n-th pass, there is no update, then the 

algorithm has found the shortest path distances.

If in the nth pass, there is an update, then there 

must be a negative cost cycle.



Mental Break

In China, what is another (English) name for white tea?

Boiled water

Approximately how many Americans eat at McDonalds 

on a given day?

Around 20 million

In what year was Diet Coke invented?

1983



What nuts are the most cultivated and extensively used 

nuts in the world.

Almonds.   They were also the first to be cultivated.

What is pomology?

The study of fruits

How many M & Ms are sold every day in the U.S.

Approximately 200 million.  M & Ms were named after 

their inventors, Forrest Mars and Bruce Murray.  They 

were developed for the U.S. Army so that soldiers could 

eat candy without getting sticky hands.

Mental Break
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Can we speed this up in practice?

Observation: if d(i) is not decreased in one pass, then 

there is no need to scan arcs out of i at the next pass.

Create a LIST of nodes j  that need to be scanned.  

Whenever d(j) is decreased, then add j to LIST

Major iteration:  select a node i from LIST and

Procedure Update(i)

for each (i, j) ∈ A(i) do

if d(j) > d(i) + cij then d(j) := d(i) + cij and 

pred(j) := i and LIST := LIST ∪ {j}.

1 i j

P

d(j) = d(i) + cij at the 

end of pass k, and d(i) 

does not change 

during pass k.
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Modified Label Correcting Algorithm

Algorithm  Modified Label Correcting;

d(1) : = 0 and  pred(1) : = ø;

d(j) : = ∅ for each j ∈ N – {1};

LIST : = {1};

while LIST ≠ ø do

delete an element  i from LIST;

Update(i)

for each j such that d(j) decreases, add j to LIST

Modified Label Correcting Algorithm
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FIFO Implementation

FIFO.  Treat LIST as a Queue.  Add nodes to the end 

of LIST and take nodes from the beginning.

LIFO. Treat LIST as a Stack.  Add nodes to the 

“top” of LIST, and delete the top node of LIST as 

well.  (Efficient in practice, but bad in the worst 

case.)

Theorem. The FIFO modified  label correcting 

algorithm finds the minimum length path from 1 

to j  for all j in N  in O(nm) steps, or else shows 

that there is a negative cost cycle.

Proof.  Similar to proof of previous algorithm.
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Solving all pairs shortest problems

Note:  Dijkstra’s algorithm is much faster in the 

worst case than label correcting.

 O(m + n log nC) vs O(mn)

 To solve the all pairs shortest path problem we 

will solve it as 

 one shortest path problem using label 

correcting

 n-1 shortest path problems using Dijkstra

 Technique:  create an equivalent optimization 

problem with nonnegative arc lengths.
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Reduced Costs

Suppose that   is any vector of node potentials.  

Let           =    cij - πi + πj be the reduced cost of arc (i,j)  

For a path P, let c(P) denote the cost (or length) of P.

Let cπ(P) denote the reduced cost (or length) of P 

c(P) = ∑(i,j)∈P   cij;                        c
π(P) = ∑(i,j)∈P          ;       

Lemma.  For any path P from node s to node t, 

cπ(P) = c(P) - πs + πt .

ij
c


ij
c

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For any path P from node s to node t, 

cπ(P) = c(P) - πs + πt .

Proof.  When written as a summation, the terms in 

cπ(P) involving  πi for some i all cancel, except 

for the term - πs and the term πt. 

Note:  for fixed vector π of multipliers and for any 

pair of nodes s and t,  cπ(P) - c(P)  is a constant 

for every path P from s to t.

Corollary.  A shortest path P from s to t with 

respect cπ is also the shortest path with respect 

to c.

4 t2s 8

1 - πs + π4

-2 - π4 + π8

4 - π8 + π2

-6 - π2 + πt

1 -2 4 -6
s 4 8 2 t
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Using reduced costs

Lemma.  Let d(j) denote the shortest path from node s 

to node j. Let πj = -d(j) for all j.

0 -1 1 -3 3

4 t2s 8

1 - πs + π4

-2 - π4 + π8

4 - π8 + π2

-6 - π2 + πt

1 -2 4 -6
s 4 8 2 t

0 0 0 0

ij
c


Then      ≥ 0 for all (i,j) ∈ A.

 
c

ij


Proof.  d(j) ≤ d(i) + cij cij + d(i) - d(j) ≥ 0  0
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Solving the all pair shortest path problem

Step 1.   Find the shortest path from node 1 to all other nodes.  

Let d(j) denote the shortest path from 1 to j for all j.

Step 2.  Let πj = -d(j) for all j.

Step 3.   For i = 2 to n, compute the shortest path from node i 

to all other nodes with respect to arc lengths cπ.

Running time using Radix Heaps**. 

O(nm) for the first shortest path tree

O(m + n log C) for each other shortest path tree.

O(nm + n2 log C) in total.

** One can choose a slightly faster approach.
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Detecting Negative Cost Cycles

Approach 1. Stop if  d(j) is sufficiently small, say d(j) ≥ -nC.

Approach 2. Run the FIFO modified label correcting 
algorithm, and stop after n passes.

Approach 3. Run the FIFO label correcting algorithm, and 
keep track of the number of arcs on the "path" from s to j.  
If the number of arcs exceeds n-1, then quit.

Approach 4. At each iteration of the algorithm, each node j 
(except for the root) has a  a temporary label d(j) and a 
predecessor pred(j).  The predecessor subgraph consists 
of the n-1 arcs {(pred(j),j) : j ≠ s}.  It should be a tree.  If it 
has a cycle, then the cost of the cycle will be negative, and 
the algorithm can terminate.
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A Predecessor Graph

Each node 

except for node 1 

has one 

predecessor.  

The graph either 

is an in-tree or it 

has a directed 

cycle.

1 2 3

4 7

6

5 8
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A Predecessor Graph

Suppose we 

Update(4), and 

pred(5) := 4. 

1 2 3

4 7

6

5 8
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A Predecessor Graph

Suppose we Update(8) 

and pred(4) := 8.  

Then 4-8-5-4 has 

negative cost.

Prior to Update(8), 

the following is true:

d(5) = d(4) + c45

d(8) = d(5) + c58

d(4) > d(8) + c84

To find negative cost cycles, periodically check the 

predecessor subgraph to see if it contains a cycle. 

1 2 3

4 7

6

5 8
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Summary of Lecture

1.  Optimality conditions for the shortest path 

algorithm.

2.  The label correcting algorithm.  Excellent in 

practice.

O(nm) in theory, using a FIFO implementation of 

LIST.

3.  All pairs shortest path problem

4.  Detecting negative cost cycles.
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