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Bucket implementations of Dijkstra’s Algorithm

R-Heaps    
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A Simple Bucket-based Scheme

Let C  =  1 + max(cij : (i,j) ∈ A); then nC is an upper 
bound on the minimum length path from 1 to n.    

RECALL: When we select nodes for Dijkstra's 
Algorithm we select them in increasing order of 
distance from node 1.

SIMPLE STORAGE RULE. Create  buckets from 0  
to nC.

Let  BUCKET(k) = {i ∈ T:  d(i) = k}.  Buckets are sets 
of nodes stored as doubly linked lists.  O(1) time 
for insertion and deletion.
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Dial’s Algorithm

 Whenever d(j) is updated, update the buckets so 

that the simple bucket scheme remains true.

 The FindMin operation looks for the minimum 

non-empty bucket.

 To find the minimum non-empty bucket, start 

where you last left off, and iteratively scan 

buckets with higher numbers.

Dial’s Algorithm
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Running time for Dial’s Algorithm

C  =  1 + max(cij : (i,j) ∈ A).

Number of buckets needed.  O(nC)

Time to create buckets. O(nC)

Time to update d( ) and buckets. O(m)

Time to find min. O(nC).

Total running time.  O(m+ nC).

This can be improved in practice; e.g., the space 
requirements can be reduced to O(C).
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Additional comments on Dial’s Algorithm

 Create buckets when needed.  Stop creating 

buckets when each node has been stored in a 

bucket.  

 Let d* = max {d*(j): j ∈ N}.  Then the maximum 

bucket ever used is at most d* + C.

Suppose j ∈ Bucket( d* + C + 1) after update(i).  

But then d(j) = d(i) + cij ≤ d* + C

d* d*+1

j

d*+2 d*+3 d*+C d*+C+1

∅



A 2-level bucket scheme

 Have two levels of buckets.

 Lower buckets are labeled 0 to K-1 (e.g., K = 10)

 Upper buckets all have a range of K.  First upper 

bucket’s range is K to 2K – 1.

 Store node j in the bucket whose range contains d(j).
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Find Min

 FindMin consists of two subroutines

 SearchLower:   This procedure searches lower 

buckets from left to right as in Dial’s algorithm.  

When it finds a non-empty bucket, it selects any 

node in the bucket.

 SearchUpper:   This procedure searches upper 

buckets from left to right.  When it finds a bucket 

that is non-empty, it transfers its elements to 

lower buckets.
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FindMin

If the lower buckets are non-empty, then SearchLower;

Else, SearchUpper and then SearchLower.



More on SearchUpper

 SearchUpper is carried out when the 

lower buckets are all empty.

 When SearchUpper finds a non-empty 

bucket, it transfers its contents to lower 

buckets.  First it relabels the lower 

buckets. 
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Running Time Analysis

 Time for SearchUpper:   O(nC/K)

 O(1) time per bucket

 Number of times that the Lower Buckets are filled 

from the upper buckets:    at most n.

 Total time for FindMin in SearchLower

 O(nK);     O(1) per bucket scanned.

 Total Time for scanning arcs and placing nodes in 

the correct buckets:   O(m)

 Total Run Time:   O(nC/K + nK + m).  

 Optimized when K = C.5

 O(nC.5 + m)
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More on multiple bucket levels

 Running time can be improved with three or more 

levels of buckets.

 Runs great in practice with two levels

 Can be improved further with buckets of range 

(width)  1, 1, 2, 4, 8, 16 …

 Radix Heap Implementation
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A Special Purpose Data Structure

 RADIX HEAP:  a specialized implementation of 

priority queues  for the shortest path problem.

 A USEFUL PROPERTY (of Dijkstra's algorithm):  

The minimum temporary label  d( ) is 

monotonically non-decreasing.    The algorithm 

labels node in order of increasing distance from 

the origin.

 C = 1 + max length of an arc 
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Radix Heap Example
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Buckets:  

bucket sizes grow 

exponentially

ranges change 

dynamically

Radix Heap 

Animation
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Analysis:  FindMin

 Scan from left to right until there is a non-empty 

bucket.   If the bucket has width 1 or a single 

element, then select an element of the bucket. 

 Time per find min:  O(K), where K is the 

number of buckets
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Analysis:  Redistribute Range

 Redistribute Range:   suppose that the minimum 

non-empty bucket is Bucket j.  Determine the min 

distance label d* in the bucket.  Then distribute 

the range of Bucket j into the previous j-1 

buckets, starting with value d*.

 Time per redistribute range:  O(K).  It takes 

O(1) steps per bucket.

 Time for determining d*: see next slide.
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Analysis:  Find min d(j) for j in bucket

 Let b the the number of items in the minimum 

bucket.  The time to find the min distance label of 

a node in the bucket is O(b).

 Every item in the bucket will move to a lower 

index bucket after the ranges are 

redistributed.

 Thus, the time to find d* is dominated by the 

time to update contents of buckets.

 We analyze that next
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Analysis:  Update Contents of Buckets

 When a node j needs to move buckets, it will 

always shift left.  Determine the correct bucket by 

inspecting buckets one at a time.

 O(1) whenever we need to scan the bucket to 

the left.

 For node j, updating takes O(K) steps in total.
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Running time analysis

 FindMin and Redistribute ranges

 O(K) per iteration.  O(nK) in total

 Find minimum d(j) in bucket

 Dominated by time to update nodes in buckets

 Scanning arcs in Update 

 O(1) per arc.   O(m) in total.

 Updating nodes in Buckets

 O(K) per node. O(nK) in total

 Running time:   O(m + nK)

O(m + n log nC)

 Can be improved to O(m + n log C)
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Summary

 Simple bucket schemes:    Dial’s Algorithm

 Double bucket schemes:    Denardo and Fox’s 

Algorithm

 Radix Heap:  A bucket based method for shortest 

path

 buckets may be redistributed

 simple implementation leads to a very good 

running time

 unusual, global analysis of running time
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