
15.082J & 6.855J & ESD.78J

Shortest Paths 2:

Bucket implementations of Dijkstra’s Algorithm

R-Heaps

2

A Simple Bucket-based Scheme

Let C = 1 + max(cij : (i,j) ∈ A); then nC is an upper
bound on the minimum length path from 1 to n.

RECALL: When we select nodes for Dijkstra's
Algorithm we select them in increasing order of
distance from node 1.

SIMPLE STORAGE RULE. Create buckets from 0
to nC.

Let BUCKET(k) = {i ∈ T: d(i) = k}. Buckets are sets
of nodes stored as doubly linked lists. O(1) time
for insertion and deletion.

3

Dial’s Algorithm

 Whenever d(j) is updated, update the buckets so

that the simple bucket scheme remains true.

 The FindMin operation looks for the minimum

non-empty bucket.

 To find the minimum non-empty bucket, start

where you last left off, and iteratively scan

buckets with higher numbers.

Dial’s Algorithm

4

Running time for Dial’s Algorithm

C = 1 + max(cij : (i,j) ∈ A).

Number of buckets needed. O(nC)

Time to create buckets. O(nC)

Time to update d() and buckets. O(m)

Time to find min. O(nC).

Total running time. O(m+ nC).

This can be improved in practice; e.g., the space
requirements can be reduced to O(C).

5

Additional comments on Dial’s Algorithm

 Create buckets when needed. Stop creating

buckets when each node has been stored in a

bucket.

 Let d* = max {d*(j): j ∈ N}. Then the maximum

bucket ever used is at most d* + C.

Suppose j ∈ Bucket(d* + C + 1) after update(i).

But then d(j) = d(i) + cij ≤ d* + C

d* d*+1

j

d*+2 d*+3 d*+C d*+C+1

∅

A 2-level bucket scheme

 Have two levels of buckets.

 Lower buckets are labeled 0 to K-1 (e.g., K = 10)

 Upper buckets all have a range of K. First upper

bucket’s range is K to 2K – 1.

 Store node j in the bucket whose range contains d(j).

6

0 1 2 3 4 5 6 7 8 9

10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99

2

12 15

distance label 3 21

5

Find Min

 FindMin consists of two subroutines

 SearchLower: This procedure searches lower

buckets from left to right as in Dial’s algorithm.

When it finds a non-empty bucket, it selects any

node in the bucket.

 SearchUpper: This procedure searches upper

buckets from left to right. When it finds a bucket

that is non-empty, it transfers its elements to

lower buckets.

7

FindMin

If the lower buckets are non-empty, then SearchLower;

Else, SearchUpper and then SearchLower.

More on SearchUpper

 SearchUpper is carried out when the

lower buckets are all empty.

 When SearchUpper finds a non-empty

bucket, it transfers its contents to lower

buckets. First it relabels the lower

buckets.

8

10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99

0 1 2 3 4 5 6 7 8 9

4

30 31 32 33 34 35 36 37 38 39

3
5

3

33

5

30

4

54

2-Level

Bucket

Algorithm

file://localhost/Users/jorlin/Documents/pc-backup/Courses/15.082/15.082%20%20%202010/Animations/V08__2-bucket%20algorithm.ppt

Running Time Analysis

 Time for SearchUpper: O(nC/K)

 O(1) time per bucket

 Number of times that the Lower Buckets are filled

from the upper buckets: at most n.

 Total time for FindMin in SearchLower

 O(nK); O(1) per bucket scanned.

 Total Time for scanning arcs and placing nodes in

the correct buckets: O(m)

 Total Run Time: O(nC/K + nK + m).

 Optimized when K = C.5

 O(nC.5 + m)

9

More on multiple bucket levels

 Running time can be improved with three or more

levels of buckets.

 Runs great in practice with two levels

 Can be improved further with buckets of range

(width) 1, 1, 2, 4, 8, 16 …

 Radix Heap Implementation

10

11

A Special Purpose Data Structure

 RADIX HEAP: a specialized implementation of

priority queues for the shortest path problem.

 A USEFUL PROPERTY (of Dijkstra's algorithm):

The minimum temporary label d() is

monotonically non-decreasing. The algorithm

labels node in order of increasing distance from

the origin.

 C = 1 + max length of an arc

12

Radix Heap Example

1

2 4

53

6

13

5

2

8

15

20

9

0

0 1 2-3 4-7 8-15 16-31 32-63

Buckets:

bucket sizes grow

exponentially

ranges change

dynamically

Radix Heap

Animation

file://localhost/Users/jorlin/Documents/pc-backup/Courses/15.082/15.082%20%20%202010/Animations/V09_Radix_Heaps.ppt

Analysis: FindMin

 Scan from left to right until there is a non-empty

bucket. If the bucket has width 1 or a single

element, then select an element of the bucket.

 Time per find min: O(K), where K is the

number of buckets

13

0 1 2-3 4-7 8-15 16-31 32-63

2

4
5

Analysis: Redistribute Range

 Redistribute Range: suppose that the minimum

non-empty bucket is Bucket j. Determine the min

distance label d* in the bucket. Then distribute

the range of Bucket j into the previous j-1

buckets, starting with value d*.

 Time per redistribute range: O(K). It takes

O(1) steps per bucket.

 Time for determining d*: see next slide.

14

0 1 2-3 4-7 8-15 16-31 32-63

2

4
5

9 10 11-12 13-15

d(5) = 9 (min label)

Analysis: Find min d(j) for j in bucket

 Let b the the number of items in the minimum

bucket. The time to find the min distance label of

a node in the bucket is O(b).

 Every item in the bucket will move to a lower

index bucket after the ranges are

redistributed.

 Thus, the time to find d* is dominated by the

time to update contents of buckets.

 We analyze that next

15

Analysis: Update Contents of Buckets

 When a node j needs to move buckets, it will

always shift left. Determine the correct bucket by

inspecting buckets one at a time.

 O(1) whenever we need to scan the bucket to

the left.

 For node j, updating takes O(K) steps in total.

16

0 1 2-3 4-7 8-15 16-31 32-63

2

4

9 10 11-12 13-15

d(5) = 9

5

Running time analysis

 FindMin and Redistribute ranges

 O(K) per iteration. O(nK) in total

 Find minimum d(j) in bucket

 Dominated by time to update nodes in buckets

 Scanning arcs in Update

 O(1) per arc. O(m) in total.

 Updating nodes in Buckets

 O(K) per node. O(nK) in total

 Running time: O(m + nK)

O(m + n log nC)

 Can be improved to O(m + n log C)

17

18

Summary

 Simple bucket schemes: Dial’s Algorithm

 Double bucket schemes: Denardo and Fox’s

Algorithm

 Radix Heap: A bucket based method for shortest

path

 buckets may be redistributed

 simple implementation leads to a very good

running time

 unusual, global analysis of running time

MIT OpenCourseWare
http://ocw.mit.edu

15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

