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Eulerian Walks

Flow Decomposition and 

Transformations



Eulerian Walks in Directed Graphs in O(m) time.

Step 1.  Create a breadth first search tree into node 

1.  For j not equal to 1, put the arc out of j in T 

last on the arc list A(j).

Step 2.   Create an Eulerian cycle by starting a walk 

at node 1 and selecting arcs in the order they 

appear on the arc lists.

2



Proof of Correctness

Relies on the following observation and invariant:

Observation:  The walk will terminate at node 1.  

Whenever the walk visits node j for j ≠ 1, the walk 

has traversed one more arc entering node j than 

leaving node j.

Invariant:  If the walk has not traversed the tree arc 

for node j, then there is a path from node j to 

node 1 consisting of nontraversed tree arcs.
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Eulerian Cycle 

Animation



Eulerian Cycles in undirected graphs

Strategy:   reduce to the directed graph problem as 

follows:

Step 1.   Use dfs to partition the arcs into disjoint 

cycles

Step 2.   Orient each arc along its directed cycle.  

Afterwards, for all i, the number of arcs entering 

node i is the same as the number of arcs leaving 

node i.

Step 3.   Run the algorithm for finding Eulerian 

Cycles in directed graphs
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Flow Decomposition and Transformations

 Flow Decomposition

 Removing Lower Bounds

 Removing Upper Bounds

 Node splitting

 Arc flows:  an arc flow x is a vector x satisfying:

Let b(i) = ∑j xij - ∑i xji

We are not focused on upper and lower bounds 

on x for now.
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Flows along Paths

Usual:  represent flows in terms of flows in arcs.

Alternative:  represent a flow as the sum of flows 

in paths and cycles.

Two units of flow 

in the path P

One unit of flow 

around the cycle C
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Properties of Path Flows

Let P be a directed path.  

Let Flow(,P) be a flow of  units in each arc of 

the path P.

Observation. If P is a path from s to t, then 

Flow(,P) sends units of δ flow from s to t, and has 

conservation of flow at other nodes.

1 2 3 4 5
2 2 2 2

P

Flow(2, P)
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Property of Cycle Flows

 If p is a cycle, then sending one unit of flow along 
p satisfies conservation of flow everywhere.
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Representations as Flows along Paths and Cycles

Let P be a collection of Paths; let f(P) denote the 
flow in path P

Let C be a collection of cycles; let f(C) denote the 
flow in cycle C.

One can convert the path and cycle flows into an 
arc flow x as follows:  for each arc (i,j) ∈ A

xij = ∑P∋(i,j) f(P)   +  ∑C∋(i,j) f(C) 
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Flow Decomposition
x: Initial flow

y: updated flow

G(y): subgraph with arcs (i, j) with yij > 0 and 
incident nodes

f(P) Flow around path P (during the algorithm)

P: paths with flow in the decomposition

C: cycles with flow in the decomposition
INVARIANT

xij = yij + ∑P∋(i,j) f(P)   +  ∑C∋(i,j) f(C) 

Initially, x = y and f = 0.
At end, y = 0, and f gives the flow decomposition. 



Deficit and Excess Nodes

Let x be a flow (not necessarily feasible)

If the flow out of node i exceeds the flow into node 

i, then node i is a deficit node.  

Its deficit is ∑j xij - ∑k xki. 

If the flow out of node i is less than the flow into 

node i, then node i is an excess node.  

Its excess is -∑j xij + ∑k xki. 

If the flow out of node i equals the flow into node i, 

then node i is a balanced node.  
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Flow Decomposition Algorithm

Step 0.  Initialize:   y := x;  f := 0;   P := ∅ ;   C:= ∅;

Step 1.  Select a deficit node j in G(y).  If no deficit node exists, 

select a node j with an incident arc in G(y);

Step 2. Carry out depth first search from j in G(y) until finding a 

directed cycle W in G(y) or a path W in G(y) from s to a node t 

with excess in G(y).

Step 3. 

1. Let Δ = capacity of W in G(y).  (See next slide)

2. Add W to the decomposition with f(W) = Δ.

3. Update y (subtract flow in W) and excesses and deficits

4. If y ≠ 0, then go to Step 1
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Capacities of Paths and Cycles

1

4

27

5

5

4

7
9

8

C

The capacity of C is 

= min arc flow on C 

wrt flow y.     

capacity = 4

The capacity of P is 

denoted as D(P, y) = 

min[ def(s), excess(t), 

min (xij : (i,j) ∈ P) ]

capacity = 2

s 4 2 9 t
6 4 3 5

P

excess = 2deficit = 3

Flow Decomposition 

Animation
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Complexity Analysis

 Select initial node:

 O(1) per path or cycle, assuming that we 

maintain a set of supply nodes and a set of 

balanced nodes incident to a positive flow arc

 Find cycle or path

 O(n) per path or cycle since finding the next 

arc in depth first search takes O(1) steps.

 Update step

 O(n) per path or cycle
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Complexity Analysis (continued)

Lemma. The number of paths and cycles found in the 
flow decomposition is at most m + n – 1.

Proof. In the update step for a cycle, at least one of 
the arcs has its capacity reduced to 0, and the arc is 
eliminated.  

In an update step for a path, either an arc is 
eliminated, or a deficit node has its deficit reduced to 
0, or an excess node has its excess reduced to 0. 

(Also, there is never a situation with exactly one 
node whose excess or deficit is non-zero).
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Conclusion

Flow Decomposition Theorem. Any non-negative 

feasible flow x can be decomposed into the 

following: 

i.   the sum of flows in paths directed from deficit 

nodes to excess nodes, plus

ii.  the sum of flows around directed cycles.  

It will always have at most n + m paths and cycles.

Remark. The decomposition usually is not unique.
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Corollary

A circulation is a flow with the property that the 

flow in is the flow out for each node.

Flow Decomposition Theorem for circulations. Any 

non-negative feasible flow x can be decomposed 

into the sum of flows around directed cycles.  

It will always have at most m cycles.
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An application of Flow Decomposition

Suppose the arcs with positive flow have no cycle.  

Then the flow can be decomposed into unit flows 

along paths from node 1 to node j for each j ≠ 1.

Consider a feasible flow where the supply of node 1 is 

n-1, and the supply of every other node is -1.

j
 x

ij

j
 x

ji
 n1 if i1

1 if i1








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A flow and its decomposition

2 4

3
5

61
3

1

1

4

-1 -1

5

-1 -1

1

-1

The decomposition of flows yields the paths:

1-2,    1-3,    1-3-4

1-3-4-5   and 1-3-4-6.

There are no cycles in the decomposition.  



Application to shortest paths

To find a shortest path from node 1 to each other 

node in a network, find a minimum cost flow in 

which b(1) = n-1 and b(j) = -1 for j ≠ 1.

The flow decomposition gives the shortest paths.
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Other Applications of Flow Decomposition

 Reformulations of Problems.  

 There are network flow models that use path 

and cycle based formulations.  

 Multicommodity Flows

 Used in proving theorems

 Can be used in developing algorithms
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The min cost flow problem (again)

The minimum cost flow problem
uij = capacity of arc (i,j).
cij = unit cost of flow sent on (i,j).
xij = amount shipped on arc (i,j)

Minimize ∑ cijxij

∑j xij - ∑k xki =   bi for all i ∈ N.
and  0 ≤ xij ≤ uij    for all (i,j) ∈ A.



The model seems very limiting

• The lower bounds are 0.

• The supply/demand constraints must be satisfied 

exactly

• There are no constraints on the flow entering or 

leaving a node.

We can model each of these constraints using 

transformations.

• In addition, we can transform a min cost flow 

problem into an equivalent problem with no 

upper bounds.
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Eliminating Lower Bound on Arc Flows

Suppose that there is a lower bound lij on the arc flow in 
(i,j)
Minimize ∑ cijxij

∑j xij - ∑k xki =   bi for all i ∈ N.
and lij ≤ xij ≤ uij    for all (i,j) ∈ A.

Then let yij = xij - lij.  Then xij = yij + lij
Minimize ∑ cij(yij + lij) 

∑j (yij + lij) - ∑k (yij + lij) =   bi for all i ∈ N.
and lij ≤ (yij + lij) ≤ uij    for all (i,j) ∈ A.

Then simplify the expressions.
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Allowing inequality constraints

Minimize ∑ cijxij

∑j xij - ∑k xki ≤ bi for all i ∈ N.
and lij ≤ xij ≤ uij    for all (i,j) ∈ A.

Let B = ∑i bi .     For feasibility, we need B ≥ 0
Create a “dummy node” n+1, with bn+1 = -B.  Add arcs 

(i, n+1) for i = 1 to n, with ci,n+1 = 0.   Any feasible 
solution for the original problem can be transformed 
into a feasible solution for the new problem by 
sending excess flow to node n+1.
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Node Splitting

Suppose that we want to add the constraint that the 

flow into node 4 is at most 7.

Flow x

Flow x’ can be 

obtained from 

flow x, and vice 

versa.

5
2

3 5

61 6
5

444

Method:  split node 4 into two nodes, say 4’ and 4”

Arc numbers 

are  capacities

5
2

3 5

61
6

5

44”4’
7
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Eliminating Upper Bounds on Arc Flows
The minimum cost flow problem

Min ∑ cijxij

s.t. ∑j xi  - ∑k xki =   bi for all i ∈ N.

and  0 ≤ xij ≤ uij    for all (i,j) ∈ A.

Before

i j
xij

uij

bi bj

i j
5

20

7 -2

After

i j<i,j>

bi-uij uij bjxijuij-xij

i j<i,j>

-13 20 -2
515
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Summary

1. Efficient implementation of finding an eulerian 
cycle.

2. Flow decomposition theorem

3. Transformations that can be used to incorporate 
constraints into minimum cost flow problems.
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