
15.082J, 6.855J, and ESD.78J

September 21, 2010

Eulerian Walks

Flow Decomposition and

Transformations

Eulerian Walks in Directed Graphs in O(m) time.

Step 1. Create a breadth first search tree into node

1. For j not equal to 1, put the arc out of j in T

last on the arc list A(j).

Step 2. Create an Eulerian cycle by starting a walk

at node 1 and selecting arcs in the order they

appear on the arc lists.

2

Proof of Correctness

Relies on the following observation and invariant:

Observation: The walk will terminate at node 1.

Whenever the walk visits node j for j ≠ 1, the walk

has traversed one more arc entering node j than

leaving node j.

Invariant: If the walk has not traversed the tree arc

for node j, then there is a path from node j to

node 1 consisting of nontraversed tree arcs.

3

Eulerian Cycle

Animation

Eulerian Cycles in undirected graphs

Strategy: reduce to the directed graph problem as

follows:

Step 1. Use dfs to partition the arcs into disjoint

cycles

Step 2. Orient each arc along its directed cycle.

Afterwards, for all i, the number of arcs entering

node i is the same as the number of arcs leaving

node i.

Step 3. Run the algorithm for finding Eulerian

Cycles in directed graphs

4

5

Flow Decomposition and Transformations

 Flow Decomposition

 Removing Lower Bounds

 Removing Upper Bounds

 Node splitting

 Arc flows: an arc flow x is a vector x satisfying:

Let b(i) = ∑j xij - ∑i xji

We are not focused on upper and lower bounds

on x for now.

6

Flows along Paths

Usual: represent flows in terms of flows in arcs.

Alternative: represent a flow as the sum of flows

in paths and cycles.

Two units of flow

in the path P

One unit of flow

around the cycle C

1 2 3 4 5
2 2 2 2

P

1

2

34

5

1

1
1

1

1

C

7

Properties of Path Flows

Let P be a directed path.

Let Flow(,P) be a flow of  units in each arc of

the path P.

Observation. If P is a path from s to t, then

Flow(,P) sends units of δ flow from s to t, and has

conservation of flow at other nodes.

1 2 3 4 5
2 2 2 2

P

Flow(2, P)

8

Property of Cycle Flows

 If p is a cycle, then sending one unit of flow along
p satisfies conservation of flow everywhere.

1

2

34

5

1

1
1

1

1

9

Representations as Flows along Paths and Cycles

Let P be a collection of Paths; let f(P) denote the
flow in path P

Let C be a collection of cycles; let f(C) denote the
flow in cycle C.

One can convert the path and cycle flows into an
arc flow x as follows: for each arc (i,j) ∈ A

xij = ∑P∋(i,j) f(P) + ∑C∋(i,j) f(C)

10

Flow Decomposition
x: Initial flow

y: updated flow

G(y): subgraph with arcs (i, j) with yij > 0 and
incident nodes

f(P) Flow around path P (during the algorithm)

P: paths with flow in the decomposition

C: cycles with flow in the decomposition
INVARIANT

xij = yij + ∑P∋(i,j) f(P) + ∑C∋(i,j) f(C)

Initially, x = y and f = 0.
At end, y = 0, and f gives the flow decomposition.

Deficit and Excess Nodes

Let x be a flow (not necessarily feasible)

If the flow out of node i exceeds the flow into node

i, then node i is a deficit node.

Its deficit is ∑j xij - ∑k xki.

If the flow out of node i is less than the flow into

node i, then node i is an excess node.

Its excess is -∑j xij + ∑k xki.

If the flow out of node i equals the flow into node i,

then node i is a balanced node.

11

Flow Decomposition Algorithm

Step 0. Initialize: y := x; f := 0; P := ∅ ; C:= ∅;

Step 1. Select a deficit node j in G(y). If no deficit node exists,

select a node j with an incident arc in G(y);

Step 2. Carry out depth first search from j in G(y) until finding a

directed cycle W in G(y) or a path W in G(y) from s to a node t

with excess in G(y).

Step 3.

1. Let Δ = capacity of W in G(y). (See next slide)

2. Add W to the decomposition with f(W) = Δ.

3. Update y (subtract flow in W) and excesses and deficits

4. If y ≠ 0, then go to Step 1

12

13

Capacities of Paths and Cycles

1

4

27

5

5

4

7
9

8

C

The capacity of C is

= min arc flow on C

wrt flow y.

capacity = 4

The capacity of P is

denoted as D(P, y) =

min[def(s), excess(t),

min (xij : (i,j) ∈ P)]

capacity = 2

s 4 2 9 t
6 4 3 5

P

excess = 2deficit = 3

Flow Decomposition

Animation

14

Complexity Analysis

 Select initial node:

 O(1) per path or cycle, assuming that we

maintain a set of supply nodes and a set of

balanced nodes incident to a positive flow arc

 Find cycle or path

 O(n) per path or cycle since finding the next

arc in depth first search takes O(1) steps.

 Update step

 O(n) per path or cycle

15

Complexity Analysis (continued)

Lemma. The number of paths and cycles found in the
flow decomposition is at most m + n – 1.

Proof. In the update step for a cycle, at least one of
the arcs has its capacity reduced to 0, and the arc is
eliminated.

In an update step for a path, either an arc is
eliminated, or a deficit node has its deficit reduced to
0, or an excess node has its excess reduced to 0.

(Also, there is never a situation with exactly one
node whose excess or deficit is non-zero).

16

Conclusion

Flow Decomposition Theorem. Any non-negative

feasible flow x can be decomposed into the

following:

i. the sum of flows in paths directed from deficit

nodes to excess nodes, plus

ii. the sum of flows around directed cycles.

It will always have at most n + m paths and cycles.

Remark. The decomposition usually is not unique.

17

Corollary

A circulation is a flow with the property that the

flow in is the flow out for each node.

Flow Decomposition Theorem for circulations. Any

non-negative feasible flow x can be decomposed

into the sum of flows around directed cycles.

It will always have at most m cycles.

18

An application of Flow Decomposition

Suppose the arcs with positive flow have no cycle.

Then the flow can be decomposed into unit flows

along paths from node 1 to node j for each j ≠ 1.

Consider a feasible flow where the supply of node 1 is

n-1, and the supply of every other node is -1.

j
 x

ij

j
 x

ji
 n1 if i1

1 if i1









19

A flow and its decomposition

2 4

3
5

61
3

1

1

4

-1 -1

5

-1 -1

1

-1

The decomposition of flows yields the paths:

1-2, 1-3, 1-3-4

1-3-4-5 and 1-3-4-6.

There are no cycles in the decomposition.

Application to shortest paths

To find a shortest path from node 1 to each other

node in a network, find a minimum cost flow in

which b(1) = n-1 and b(j) = -1 for j ≠ 1.

The flow decomposition gives the shortest paths.

20

21

Other Applications of Flow Decomposition

 Reformulations of Problems.

 There are network flow models that use path

and cycle based formulations.

 Multicommodity Flows

 Used in proving theorems

 Can be used in developing algorithms

24

The min cost flow problem (again)

The minimum cost flow problem
uij = capacity of arc (i,j).
cij = unit cost of flow sent on (i,j).
xij = amount shipped on arc (i,j)

Minimize ∑ cijxij

∑j xij - ∑k xki = bi for all i ∈ N.
and 0 ≤ xij ≤ uij for all (i,j) ∈ A.

The model seems very limiting

• The lower bounds are 0.

• The supply/demand constraints must be satisfied

exactly

• There are no constraints on the flow entering or

leaving a node.

We can model each of these constraints using

transformations.

• In addition, we can transform a min cost flow

problem into an equivalent problem with no

upper bounds.

23

26

Eliminating Lower Bound on Arc Flows

Suppose that there is a lower bound lij on the arc flow in
(i,j)
Minimize ∑ cijxij

∑j xij - ∑k xki = bi for all i ∈ N.
and lij ≤ xij ≤ uij for all (i,j) ∈ A.

Then let yij = xij - lij. Then xij = yij + lij
Minimize ∑ cij(yij + lij)

∑j (yij + lij) - ∑k (yij + lij) = bi for all i ∈ N.
and lij ≤ (yij + lij) ≤ uij for all (i,j) ∈ A.

Then simplify the expressions.

27

Allowing inequality constraints

Minimize ∑ cijxij

∑j xij - ∑k xki ≤ bi for all i ∈ N.
and lij ≤ xij ≤ uij for all (i,j) ∈ A.

Let B = ∑i bi . For feasibility, we need B ≥ 0
Create a “dummy node” n+1, with bn+1 = -B. Add arcs

(i, n+1) for i = 1 to n, with ci,n+1 = 0. Any feasible
solution for the original problem can be transformed
into a feasible solution for the new problem by
sending excess flow to node n+1.

26

Node Splitting

Suppose that we want to add the constraint that the

flow into node 4 is at most 7.

Flow x

Flow x’ can be

obtained from

flow x, and vice

versa.

5
2

3 5

61 6
5

444

Method: split node 4 into two nodes, say 4’ and 4”

Arc numbers

are capacities

5
2

3 5

61
6

5

44”4’
7

29

Eliminating Upper Bounds on Arc Flows
The minimum cost flow problem

Min ∑ cijxij

s.t. ∑j xi - ∑k xki = bi for all i ∈ N.

and 0 ≤ xij ≤ uij for all (i,j) ∈ A.

Before

i j
xij

uij

bi bj

i j
5

20

7 -2

After

i j<i,j>

bi-uij uij bjxijuij-xij

i j<i,j>

-13 20 -2
515

28

Summary

1. Efficient implementation of finding an eulerian
cycle.

2. Flow decomposition theorem

3. Transformations that can be used to incorporate
constraints into minimum cost flow problems.

MIT OpenCourseWare
http://ocw.mit.edu

15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

