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Overview of this Lecture

 A very fast overview of some data structures that 

we will be using this semester

 lists, sets, stacks, queues, networks, trees

 a variation on the well known heap data 

structure

 binary search

 Illustrated using animation

 We are concerned with O( ) computation counts, 

and so do not need to get down to C++- level (or 

Java level).
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Two standard data structures

1 0 1 1 0 1 0 1 0 0

1 2 3 4 5 6 7 8 9 10

Array: a vector:  stored consecutively in 

memory, and typically allocated in advance 

cells:  hold fields of numbers and pointers 

to implement lists.

1 6 3 8 4

first
This is a singly linked list



Representations of subsets of a set
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1 0 1 1 0 1 0 1 0 0

1 2 3 4 5 6 7 8 9 10

Array    

A

subset  S = {1, 3, 4, 6, 8}

1 6 3 8 4

first List L

The choice of data structure depends on what 

operations need to be carried out.



Example 1:     Creating an empty set

5

0

first

Initialize:  subset  S = ∅

0 0 0 0 0

1 2 3 4 n

… O(n) steps

O(1) steps



Example 2:    Is x ∈ S?

6

1 0 1 1 0 1 0 1 0 0

1 2 3 4 5 6 7 8 9 10

1 6 3 8 4

first To determine if 9 ∈ S?, one needs to scan the 

entire list.  

Is 9 ∈ S?

O(1) steps

O(n) steps
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Representing a linked list as an array

6 8 ∅ 3 4

1 2 3 4 5 6 7 8 9 10

1 6 3 8 4

first

Array:  Next

If Next(j) is empty, then j is not on the list

If Next(j) = ∅, then j is the last element on the list
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Two key concepts

Abstract data types:  a descriptor of the operations 
that are permitted, e.g., 

abstract data type:  set S

 initialize(S):  creates an empty set S

 add(S, s):  replaces S by S ∪ {s}.

 delete(S, s): replaces S by S \{s}

 IsElement(S, s):  returns true if s ∈ S

 etc.

Data structure:  usually describes the high level 
implementation of the abstract data types, and 
can be analyzed for running time.

 doubly linked list, etc



9

A note on data structures

 Preferences

 Simplicity

 Efficiency

 In case there are multiple good 

representations, we will choose one
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Abstract data type:   SetOperations

Operation (assume S ⊆ {1, 2, 3, … n}.

 initialize(S):     S := ∅

 add(S, j):          S := S ∪ {j} 

 delete(S, j):       S := S\{j} 

 IsElement(S, j):  returns TRUE  if s ∈ S

 FindElement(S): if S ≠ ∅, returns j for some j ∈ S

 Next(S, j) : if j ∈ S, it finds the next element 

after j on S (viewed as a list)  



Implementation using doubly linked list
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42first 2 4

8 2

1 2 3 4 5 6 7 8 9 10

∅

8

4 ∅

1 2 3 4 5 6 7 8 9 10

2Next( )

Prev

First = 8



Add element 5 to the set (in first position)
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42first 2 4

8 2 ∅

8

4 ∅

1 2 3 4 5 6 7 8 9 10

2Next( )

Prev( )

Temp:= First

Temp

First 8

Elt 5

Prev(Temp): = Elt

First:= Elt

Prev(Elt): = ∅

Next(Elt): = Temp

5

5



Add element 5 to the set (in first position)
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42first 2 4

8 2 ∅

8

4 ∅

1 2 3 4 5 6 7 8 9 10

2Next( )

Prev( )

Temp:= First

Temp

First 8

8

Elt 5

Prev(Temp): = Elt

First:= Elt

Prev(Elt): = ∅

Next(Elt): = Temp

5

8

∅

5

5

Adding an element 

to a set takes O(1) 

steps using this 

implementation.



Delete element 2 from the set (assume it is 

neither in first or last position)
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42first 2 4

8 2 ∅

8

4 ∅

1 2 3 4 5 6 7 8 9 10

2Next( )

Prev( )

Temp

First 8

Elt 2

5

8

∅

5

5



Delete element 2 from the set (assume it is 

neither in first or last position)

15

2first 4

8 2 ∅

8 2

4 ∅

1 2 3 4 5 6 7 8 9 10

2Next( )

Prev( )
First 8

Elt 2

Prev(Elt) := 0

Next(Prev(Elt)):=Next(Elt)

Next(Elt): = 0

5

8

∅

5

5

Deleting an element 

from the set takes O(1) 

steps using this 

implementation.

4

Prev(Next(Elt)):=Prev(Elt)

8
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Operations using doubly linked lists

Operation           Number of steps

 initialize(S):     O(n)

 add(S, j):          O(1) 

 delete(S, j):       O(1)

 IsElement(S, j):  O(1)

 FindElement(S): O(1)

 Next(S, j): O(1)

 Previous(S, j) : O(1)



Maintaining disjoint subsets of elements

17

42First(1) 2 48

S1 = {8, 2, 4} S1 = {5, 7, 1}

42First(2) 7 15

7 8 2 5 ∅Prev( ) ∅∅28

4 ∅ 1

1 2 3 4 5 6 7 8 9 10

2Next( ) 7 24∅

8 5First( )



Maintaining ordered lists

The doubly linked list is not efficient for maintaining 

ordered lists of nodes.

18

42first 4 82

4 ∅

1 2 3 4 5 6 7 8 9 10

2Next( )

8 2 ∅Prev( ) 5

Inserting an element into the set (such as 7) requires 

finding  Prev and Next for 7 (4 and 8), and this 

requires O(n) time with this implementation.



Complete binary tree with n elements

Complete binary trees for storing ordered lists of 

nodes or arcs.  We assume that the number of 

nodes is n (e.g., 8) and the number of arcs is m.

19

S = {2, 4, 8}     n = 8.

2 4

1 2 3 4 5 6 7

8

8



Complete binary tree with n elements

Build up the binary tree.  In each parent store the 

least value of its children.

20

2 4

1 2 3 4 5 6 7

8

S = {2, 4, 8}     n = 8.

8

2 4 8



Complete binary tree with n elements

Build up the binary tree.  In each parent store the 

least value of its children.

21

2 4

1 2 3 4 5 6 7

8

S = {2, 4, 8}     n = 8.

8

2 84

2 8



Complete binary tree with n elements

Build up the binary tree.  In each parent store the 

least value of its children.

22

2 4

1 2 3 4 5 6 7

8

S = {2, 4, 8}     n = 8.

8

2 84

2 8

2



Find greatest element less than j

e.g., find the greatest 

element less than 7 

23

2 4

1 2 3 4 5 6 7

8

8

2 84

2 8

2

5

5

5

2
O(log n) 

steps for 

finding 

greatest 

element less 

than j.

start at 7

go up the tree until a node 

has label < 7.  Take left branch.

Choose the largest label child 

going down.



Delete an element

e.g., delete element 2

24

2 4

1 2 3 4 5 6 7

8

S = {4, 5, 8}     n = 8.

8

2 84

2 8

2

5

5

5

2

O(log n) steps for 

an deletion

4

4

Start at node 2 and update it 

and its ancestors.



Operations using complete binary trees
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Operation           Number of steps

 initialize(S):     O(n)

 add(S, j):          O(log n) 

 delete(S, j):       O(log n)

 IsElement(S, j):  O(1)

 FindElement(S): O(1)

 Next(S, j): O(log n)

 Previous(S, j) : O(log n)

 MinElement(S) O(1)

 MaxElement(S) O(log n)
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A network

1

2

3

45

We can view the arcs of a 

networks as a collection of sets.

Let A(i) be the arcs emanating 

from node i.

e.g., A(5) = { (5,3), (5,4) }

Note:  these sets are usually static.  They stay the same. 

Common operations:  scanning the list A(i) one arc at a 

time starting at the first arc.
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Storing Arc Lists: A(i)

Operations permitted

 Find first arc in A(i)

 Store a pointer to the current arc in A(i)

 Find the arc after CurrentArc(i) 

i j cij uij

2 4 15 40

3 2 45 10 5 45 60

5 3 25 20 4 35 50

4

1 2 25 30 5 15 403 23 35
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Scanning the arc list

CurrentArc(i) is a pointer to the arc of A(i) that is 

being scanned or is the next to be scanned. 

1 2 25 30 5 15 403 23 35

CurrentArc(1) CurrentArc(1)

Initially, CurrentArc(i) is the first arc of A(i)

After CurrentArc(i) is fully scanned, 

CurrentArc(i) := Next(CurrentArc(i))
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Scanning the arc list

CurrentArc(i) is a pointer to the arc of A(i) that is 

being scanned or is the next to be scanned. 

1 2 25 30 5 15 403 23 35

1

2

3

5

CurrentArc(1) CurrentArc(1) CurrentArc(1)

Finding CurrentArc and the arc 

after CurrentArc takes O(1) steps.

These are also implemented 

often using arrays called 

forward star representations.



The Adjacency Matrix 

(for directed graphs)

2

34

1

a

b

c

d

e

A Directed Graph

0 1 0 1

0 0 1 0

0 0 0 0

0 1 1 0

•Have a row for each node

1   2    3    4

1

2

3

4

•Have a column for each node

•Put a 1 in row i- column j if (i,j) is an arc 

What would happen if (4,2) became (2,4)?
30



The Adjacency Matrix 

(for undirected graphs)

0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0

•Have a row for each node

1   2    3    4

1

2

3

4

•Have a column for each node

•Put a 1 in row i- column j if (i,j) is an 

arc 

2

34

1

a

b

c

d

e

An Undirected Graph

The degree of a node is the number of 

incident arcs

degree 

2

3

2

3

31
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Adjacency Matrix vs Arc Lists

Adjacency Matrix?

Efficient storage if matrix is very “dense.”

Can determine if (i,j) ∈ A(i) in O(1) steps.

Scans arcs in A(i) in O(n) steps.

Adjacency lists?

Efficient storage if matrix is “sparse.”

Determining if (i,j) ∈ A(i) can take |A(i)| steps

Can scan all arcs in A(i) in |A(i)| steps
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Trees

A tree is a connected acyclic graph.  

(Acyclic here, means it has no undirected cycles.)

If a tree has n nodes, it has n-1 arcs.

1

2

3

6

54

This is an undirected tree.

To store trees efficiently, we 

hang the tree from a root node.

(In principle, any node can be 

selected for the root.)

3



1

2

3

6

5

9

10

84

7

34

Forest

A forest is an acyclic graph that includes all of the 

nodes. 

A subtree of a forest is a connected component of the 

forest.  

To store trees efficiently, each subtree has a root 

node.

3

1

10
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One way of storing subtrees

1

2

3

6

54

3

2

3 1 6

5

4

1 4 2

6 5

Lists of children

parent (predecessor) array

3 1 1 6 3

1 2 3 4 5 6node

parent



On storing trees

Trees are important parts 

of flow algorithms

Some data structures are 

expressed as trees

The best implementation 

of trees depends on 

what operations need 

to be performed in the 

abstract data type.

36

1

2

3

6

54

3
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Stacks -- Last In, First Out  (LIFO)

Operations:  

 create(S) creates an empty stack S

 push(S, j) adds j to the top of the stack

 pop(S) deletes the top element in S

 top(S) returns the top element in S

3

7

2

5

6

pop(S) pop(S) 

3

7

2

5

6

3

7

2

5

3

7

2

9
push(S,9) 
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Queues – First in, First Out (FIFO)

Operations:  

 create(Q) creates an empty queue Q

 Insert(Q, j) adds j to the end of the queue

 Delete(Q) deletes the first element in Q

 first(Q) returns the top element in S

37256 Delete(Q)

37256 Delete(Q)

3725 Insert(Q,9)

372 9
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Binary Search 

2 4 6 9 13 17 22 24 27 31 33 36 42 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14

In the ordered list of numbers below, stored in an 

array, determine whether the number 25 is on the list.

Left Right



40

Binary Search 

2 4 6 9 13 17 22 24 27 31 33 36 42 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14

In the ordered list of numbers below, stored in an 

array, determine whether the number 25 is on the list.

Left RightLeft
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Binary Search 

22 24 27 31 33 36 42 45

7 8 9 10 11 12 13 14

In the ordered list of numbers below, stored in an 

array, determine whether the number 25 is on the list.

RightLeft Right

After two more iterations, we will determine that 25 is not 

on the list, but that 24 and 27 are on the list.

Running time is O( log n) for running binary search.
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Summary

Review of data structures

 Lists, sets, complete binary trees, trees

 queues, stacks

 binary search

Next Lecture:  Search algorithms
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