

15.082 and 6.855J Fall 2010

Network Optimization J.B. Orlin

WELCOME!

 Welcome to 15.082/6.855J

 Introduction to Network Optimization

 Instructor: James B. Orlin

 TA: David Goldberg

 Textbook: Network Flows: Theory, Algorithms,

and Applications by Ahuja, Magnanti, and Orlin

referred to as AMO

2

Quick Overview

 Next: The Koenigsberg Bridge Problem

 Introduces Networks and Network Algorithms

 Some subject management issues

 Network flows and applications

 Computational Complexity

 Overall goal of today’s lecture: set the tone for the rest of

the subject

 provide background

 provide motivation

 handle some class logistics

3

On the background of students

 Requirement for this class

 Either Linear Programming (15.081J)

 or Data Structures

 Mathematical proofs

 The homework exercises usually call for

proofs.

 The midterms will not require proofs.

 For those who have not done many proofs

before, the TA will provide guidance

4

Some aspects of the class

 Fondness for Powerpoint animations

 Cold-calling as a way to speed up learning of the
algorithms

 Talking with partners (the person next to you in
in the classroom.)

 Class time: used for presenting theory,
algorithms, applications

 mostly outlines of proofs illustrated by

examples (not detailed proofs)

 detailed proofs are in the text

5

The Bridges of Koenigsberg: Euler 1736

 “Graph Theory” began in 1736

 Leonard Eüler

 Visited Koenigsberg

 People wondered whether it is possible to take

a walk, end up where you started from, and

cross each bridge in Koenigsberg exactly

once

 Generally it was believed to be impossible

6

The Bridges of Koenigsberg: Euler 1736

A

D

C

B

1 2

4

3

7

65

Is it possible to start in A, cross over each bridge

exactly once, and end up back in A?
7

The Bridges of Koenigsberg: Euler 1736

A

D

C

B

1 2

4

3

7

65

Conceptualization: Land masses are “nodes”.

8

 The Bridges of Koenigsberg: Euler 1736

1 2

4

3

7

65

A

C

D

B

Conceptualization: Bridges are “arcs.”

9

The Bridges of Koenigsberg: Euler 1736

1 2

4

3

7

65

A

C

D

B

Is there a “walk” starting at A and ending at A and

passing through each arc exactly once?

10

Notation and Terminology

Network terminology as used in AMO.

b b
2

34

1

c

2

34

1

ca a e e

d d

An Undirected Graph or A Directed Graph or

Undirected Network Directed Network

Network G = (N, A)

Node set N = {1, 2, 3, 4}

Arc Set A = {(1,2), (1,3), (3,2), (3,4), (2,4)}

In an undirected graph, (i,j) = (j,i)

11

2 3 4
a b

c

1

5
d

e

Path: Example: 5, 2, 3, 4.

(or 5, c, 2, b, 3, e, 4)
•No node is repeated.

•Directions are ignored.

Directed Path . Example: 1, 2, 5, 3, 4

(or 1, a, 2, c, 5, d, 3, e, 4)
•No node is repeated. 2 3 4

a b

c

1

5
d

e

•Directions are important.

Cycle (or circuit or loop)

1, 2, 3, 1. (or 1, a, 2, b, 3, e)
•A path with 2 or more nodes, except

that the first node is the last node.

•Directions are ignored.

Directed Cycle: (1, 2, 3, 4, 1) or

1, a, 2, b, 3, c, 4, d, 1
•No node is repeated.

•Directions are important.

2

3

4

a b

cd

1
e

2

3

4

a b

cd

1
e

same.

Walks

2

34

1

a

b

c

d

e

5

2

34

1

a

b

c

d

e

5

Walks are paths that can repeat nodes and arcs

Example of a directed walk: 1-2-3-5-4-2-3-5

A walk is closed if its first and last nodes are the

A closed walk is a cycle except that it can repeat

nodes and arcs.

13

14

The Bridges of Koenigsberg: Euler 1736

1 2

4

3

7

65

A

C

D

B

Is there a “walk” starting at A and ending at A and

passing through each arc exactly once?

Such a walk is called an eulerian cycle.

Adding two bridges creates such a walk

1 2

4

3

7

65

A

C

D

B

8

9

Here is the walk.

A, 1, B, 5, D, 6, B, 4, C, 8, A, 3, C, 7, D, 9, B, 2, A

Note: the number of arcs incident to B is twice

the number of times that B appears on the walk.
 15

On Eulerian Cycles

1 2

4

3

7

65

A

C

D

B

8

9

6

4

4

4

The degree of

a node in an

undirected

graph is the

number of

incident arcs

Theorem. An undirected graph has an eulerian

cycle if and only if

(1) every node degree is even and

(2) the graph is connected (that is, there is a path

from each node to each other node).

45 37

More on Euler’s Theorem
	

 Necessity of two conditions:

 Any eulerian cycle “visits” each node an even
number of times

 Any eulerian cycle shows the network is connected
 caveat: nodes of degree 0

 Sufficiency of the condition

 Assume the result is true for all graphs with fewer
than |A| arcs.

 Start at some node, and take a walk until a cycle C is
found.

1 45 37
17

5

More on Euler’s Theorem
	

 Sufficiency of the condition

 Start at some node, and take a walk until a cycle C is

found.

 Consider G’ = (N, A\C)

 the degree of each node is even

 each component is connected

 So, G’ is the union of Eulerian cycles

 Connect G’ into a single eulerian cycle by adding C.

18

4 37

Comments on Euler’s theorem
	

1.	 It reflects how proofs are done in class, often in

outline form, with key ideas illustrated.

2.	 However, this proof does not directly lead to an

efficient algorithm. (More on this in two

lectures.)

3.	 Usually we focus on efficient algorithms.

19

15.082/6.855J Subject Goals:

1.	 To present students with a knowledge of the

state-of-the art in the theory and practice of

solving network flow problems.

 A lot has happened since 1736

2. To provide students with a rigorous analysis of

network flow algorithms.

 computational complexity & worst case

analysis

3. 	 To help each student develop his or her own

intuition about algorithm development and

algorithm analysis.
20

Homework Sets and Grading

 Homework Sets

 6 assignments

 4 points per assignment

 lots of practice problems with solutions

 Grading

 homework: 24 points

 Project 16 points

 Midterm 1: 30 points

 Midterm 2: 30 points

21

Class discussion

 Have you seen network models elsewhere?

 Do you have any specific goals in taking this

subject?

22

Mental break

Which nation gave women the right to vote first?

New Zealand.

Which Ocean goes to the deepest depths?

Pacific Ocean

What is northernmost land on earth?

Cape Morris Jessep in Greenland

Where is the Worlds Largest Aquarium?

Epcot Center in Orlando, FL
23

Mental break

What country has not fought in a war since 1815?

Switzerland

What does the term Prima Donna mean in Opera?

The leading female singer

What fruit were Hawaiian women once forbidden by

law to eat?

The coconut

What’s the most common non-contagious disease in

the world?

Tooth decay
24

Three Fundamental Flow Problems

 The shortest path problem

 The maximum flow problem

 The minimum cost flow problem

25

1 61

The shortest path problem

2

3

4

5

2

4

21

3

4

2

3

2

1 6

Consider a network G = (N, A) in which there is

an origin node s and a destination node t.

standard notation: n = |N|, m = |A|

What is the shortest path from s to t?

26

The Maximum Flow Problem

 Directed Graph G = (N, A).

 Source s

 Sink t

 Capacities uij on arc (i,j)

 Maximize the flow out of s, subject to

 Flow out of i = Flow into i, for i ≠ s or t.

s

1

2

t

10
8

1

10
6

9 8

1

76

A Network with Arc Capacities (and the maximum flow) 27

Representing the Max Flow as an LP

s

1

2

t

10, 9 8,8

1,1

10,76, 6

Flow out of i - Flow into i = 0
for i ≠ s or t.

max v
max v
s.t 	 xs1 + xs2 = v s.t. ∑j xsj = v

– 	 = 0-xs1 + x12 + x1t = 0
 ∑j xij ∑j xji

-xs2 - x12 + x2t = 0 for each i ≠ s or t

-x1t - x2t = -v s.t. -∑i xit = -v

0 ≤ xij ≤ uij for all (i,j) 0 ≤ xij ≤ uij for all (i,j) 28

Min Cost Flows

1	

2

3

4

$4 ,10

5 Flow out of i - Flow into i = b(i)

Each arc has a
linear cost and a
capacity

min ∑i,j 	 cijxij

s.t 	 ∑j xij – ∑j xji = b(i) for each i

0 ≤ xij ≤ uij for all (i,j)

Covered in detail in Chapter 1 of AMO
29

Where Network Optimization Arises

 Transportation Systems

 Transportation of goods over transportation networks

 Scheduling of fleets of airplanes

 Manufacturing Systems

 Scheduling of goods for manufacturing

 Flow of manufactured items within inventory systems

 Communication Systems

 Design and expansion of communication systems

 Flow of information across networks

 Energy Systems, Financial Systems, and much more

30

Next topic: computational complexity

 What is an efficient algorithm?

 How do we measure efficiency?

 “Worst case analysis”

 but first …

31

Measuring Computational Complexity

 Consider the following algorithm for adding two m × n
matrices A and B with coefficients a(,) and b(,).

begin

for i = 1 to m do

for j = 1 to n do c(i,j) := a(i,j) + b(i,j)

end

What is the running time of this algorithm?
 Let’s measure it as precisely as we can as a function of n and m.

 Is it 2nm, or 3nm, or what?

Worst case versus average case
 How do we measure the running time?

 What are the basic steps that we should count?
32

Compute the running time precisely.

Operation Number (as a function of m,n)

Additions

Assignments

Comparisons

Multiplications

33

Towards Computational Complexity

1. 	 We will ignore running time constants.

2. 	 Our running times will be stated in terms of
relevant problem parameters, e.g., nm.

3. 	 We will measure everything in terms of worst
case or most pessimistic analysis (performance
guarantees.)

4. 	 All arithmetic operations are assumed to take
one step,
(or a number of steps that is bounded by a
constant).

34

A Simpler Metric for Running Time.

 Operation Number (as a function of m,n)

 Additions ≤ c1 mn for some c1 and m, n ≥ 1

 O(mn) steps

 Assignments ≤ c2 mn for some c2 and m, n ≥ 1

 O(mn) steps

 Comparisons ≤ c3 mn for some c3 and m, n ≥ 1

 O(mn) steps

 TOTAL ≤ c4 mn for some c4 and m, n ≥ 1

 O(mn) steps

35

Simplifying Assumptions and Notation

 MACHINE MODEL: Random Access Machine

(RAM).

This is the computer model that everyone is used

to. It allows the use of arrays, and it can select

any element of an array or matrix in O(1) steps.

 c(i,j) := a(i,j) + b(i,j).

 Integrality Assumption. All numbers are integral

(unless stated otherwise.)

36

Size of a problem

 The size of a problem is the number of bits

needed to represent the problem.

 The size of the n × m matrix A is not nm.

 If each matrix element has K bits, the size is

nmK

 e.g., if max 2107 < aij < 2108, then K = 108.

 K = O(log (amax)).

37

Polynomial Time Algorithms

 We say that an algorithm runs in polynomial time

if the number of steps taken by an algorithm on

any instance I is bounded by a polynomial in the

size of I.

 We say that an algorithm runs in exponential time

if it does not run in polynomial time.

 Example 1: finding the determinant of a matrix

can be done in O(n3) steps.

 This is polynomial time.

38

Polynomial Time Algorithms

 Example 2: We can determine if n is prime by dividing n by

every integer less than n.

 This algorithm is exponential time.

 The size of the instance is log n

 The running time of the algorithm is O(n).

 Side note: there is a polynomial time algorithm for

determining if n is prime.

 Almost all of the algorithms presented in this class will be

polynomial time.

 One can find an Eulerian cycle (if one exists) in O(m) steps.

 There is no known polynomial time algorithm for finding a

min cost traveling salesman tour

39

On polynomial vs exponential time

 We contrast two algorithm, one that takes 30,000 n3

steps, and one that takes 2n steps.

 Suppose that we could carry out 1 billion steps per

second.

 # of nodes

n = 30,

n = 40,

n = 50

n = 60

30,000 n3 steps2n

 0.81 seconds

 1.92 seconds

3.75 seconds

6.48 seconds

steps

1 second

17 minutes

12 days

31 years

40

On polynomial vs. exponential time

 Suppose that we could carry out 1 trillion steps

per second, and instantaneously eliminate

99.9999999% of all solutions as not worth

considering

 # of nodes

n = 70,

n = 80,

n = 90

n = 100

1,000 n10 steps

2.82 seconds

10.74 seconds

34.86 seconds

100 seconds

2n steps

1 second

17 minutes

12 days

31 years

41

Overview of today’s lecture
	

 Eulerian cycles

 Network Definitions

 Network Applications

 Introduction to computational complexity

42

Upcoming Lectures

 Lecture 2: Review of Data Structures

 even those with data structure backgrounds

are encouraged to attend.

 Lecture 3. Graph Search Algorithms.

 how to determine if a graph is connected

 and to label a graph

 and more

43

MIT OpenCourseWare
http://ocw.mit.edu

15.082J / 6.855J / ESD.78J Network Optimization

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

