
    

 

15.082 and 6.855J    Fall 2010
 

Network Optimization    J.B. Orlin
 



 

   

WELCOME!
 

 Welcome to 15.082/6.855J 

 Introduction to Network Optimization 

 Instructor:   James B. Orlin 

 TA:  David Goldberg 

 Textbook: Network Flows:  Theory, Algorithms, 

and Applications by Ahuja, Magnanti, and Orlin 

referred to as AMO 
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Quick Overview
 

 Next:  The Koenigsberg Bridge Problem 

 Introduces Networks and Network Algorithms 

 Some subject management issues 

 Network flows and applications 

 Computational Complexity 

 Overall goal of today’s lecture: set the tone for the rest of 

the subject 

 provide background 

 provide motivation 

 handle some class logistics 
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On the background of students
 

 Requirement for this class 

 Either Linear Programming (15.081J) 

 or Data Structures 

 Mathematical proofs 

 The homework exercises usually call for 

proofs. 

 The midterms will not require proofs. 

 For those who have not done many proofs 

before, the TA will provide guidance 
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Some aspects of the class
 

 Fondness for Powerpoint animations 

 Cold-calling as a way to speed up learning of the 
algorithms 

 Talking with partners (the person next to you in 
in the classroom.) 

 Class time:  used for presenting theory, 
algorithms, applications 

 mostly outlines of proofs illustrated by
 
examples (not detailed proofs)
 

 detailed proofs are in the text 
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The Bridges of Koenigsberg: Euler 1736
 

 “Graph Theory” began in 1736 

 Leonard Eüler 

 Visited Koenigsberg 

 People wondered whether it is possible to take 

a walk, end up where you started from, and 

cross each bridge in Koenigsberg exactly 

once 

 Generally it was believed to be impossible
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The Bridges of Koenigsberg:  Euler 1736
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Is it possible to start in A, cross over each bridge 

exactly once, and end up back in A? 
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The Bridges of Koenigsberg:  Euler 1736
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Conceptualization:  Land masses are “nodes”. 
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 The Bridges of Koenigsberg:  Euler 1736
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Conceptualization:  Bridges are “arcs.” 
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The Bridges of Koenigsberg:  Euler 1736
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B 

Is there a “walk” starting at A and ending at A and 

passing through each arc exactly once?  
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Notation and Terminology
 

Network terminology as used in AMO. 

b b 
2

34 

1 

c 

2

34 

1 

ca a e e 

d d 

An Undirected Graph or A Directed Graph or 

Undirected Network Directed Network 

Network G = (N, A)
 

Node set N = {1, 2, 3, 4} 


Arc Set A =  {(1,2), (1,3), (3,2), (3,4), (2,4)}
 

In an undirected graph, (i,j) = (j,i)
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2 3 4
a b 

c 

1 

5 
d 

e 

Path: Example:  5, 2, 3, 4.  

(or 5, c, 2, b, 3, e, 4) 
•No node is repeated. 

•Directions are ignored. 

Directed Path . Example: 1, 2, 5, 3, 4 

(or 1, a, 2, c, 5, d, 3, e, 4) 
•No node is repeated. 2 3 4

a b 

c 

1 

5 
d 

e 

•Directions are important. 

Cycle (or circuit or loop) 

1, 2, 3, 1.  (or 1, a, 2, b, 3, e) 
•A path with 2 or more nodes, except 

that the first node is the last node.
 
•Directions are ignored. 

Directed Cycle: (1, 2, 3, 4, 1) or 

1, a, 2, b, 3, c, 4, d, 1 
•No node is repeated. 

•Directions are important. 
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same.

Walks
 

2 

34 
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2 

34 
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a 

b 
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5 

Walks are paths that can repeat nodes and arcs 

Example of a directed walk:   1-2-3-5-4-2-3-5 

A walk is closed if its first and last nodes are the 

A closed walk is a cycle except that it can repeat 

nodes and arcs. 
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The Bridges of Koenigsberg:  Euler 1736 
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B 

Is there a “walk” starting at A and ending at A and 

passing through each arc exactly once?  

Such a walk is called an eulerian cycle. 




  

 

Adding two bridges creates such a walk 

1 2 
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65 

A 

C 

D 

B 

8 

9 

Here is the walk.
 

A, 1, B, 5, D, 6, B, 4, C, 8, A, 3, C, 7, D, 9, B, 2, A
 

Note: the number of arcs incident to B is twice 

the number of times that B appears on the walk.
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On Eulerian Cycles
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The degree of 

a node in an 

undirected 

graph is the 

number of 

incident arcs 

Theorem. An undirected graph has an eulerian 

cycle if and only if 

(1) every node degree is even and 

(2) the graph is connected (that is, there is a path 

from each node to each other node). 



 

 

 

 
 

45 37

More on Euler’s Theorem
	

 Necessity of two conditions: 

 Any eulerian cycle “visits” each node an even 
number of times 

 Any eulerian cycle shows the network is connected 
 caveat: nodes of degree 0 

 Sufficiency of the condition 

 Assume the result is true for all graphs with fewer 
than |A| arcs. 

 Start at some node, and take a walk until a cycle C is 
found. 

1 45 37 
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More on Euler’s Theorem
	

 Sufficiency of the condition 

 Start at some node, and take a walk until a cycle C is 

found. 

 Consider G’ = (N, A\C) 

 the degree of each node is even 

 each component is connected 

 So, G’ is the union of Eulerian cycles 

 Connect G’ into a single eulerian cycle by adding C. 
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Comments on Euler’s theorem
	

1.	 It reflects how proofs are done in class, often in 

outline form, with key ideas illustrated. 

2.	 However, this proof does not directly lead to an 

efficient algorithm. (More on this in two 

lectures.) 

3.	 Usually we focus on efficient algorithms. 
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15.082/6.855J Subject Goals: 


1.	 To present students with a knowledge of the 

state-of-the art in the theory and practice of 

solving network flow problems. 

 A lot has happened since 1736 

2. To provide students with a rigorous analysis of 

network flow algorithms. 

 computational complexity & worst case 

analysis 

3. 	 To help each student develop his or her own 

intuition about algorithm development and 

algorithm analysis. 
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Homework Sets and Grading 


 Homework Sets
 
 6 assignments
 
 4 points per assignment
 
 lots of practice problems with solutions
 

 Grading 

 homework: 24 points 

 Project 16 points 

 Midterm 1:   30 points 

 Midterm 2: 30 points 
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Class discussion
 

 Have you seen network models elsewhere?
 

 Do you have any specific goals in taking this 

subject? 
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Mental break
 

Which nation gave women the right to vote first?
 

New Zealand. 

Which Ocean goes to the deepest depths? 

Pacific Ocean 

What is northernmost land on earth? 

Cape Morris Jessep in Greenland 

Where is the Worlds Largest Aquarium? 

Epcot Center in Orlando, FL 
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Mental break
 

What country has not fought in a war since 1815? 

Switzerland 

What does the term Prima Donna mean in Opera? 

The leading female singer 

What fruit were Hawaiian women once forbidden by 

law to eat? 

The coconut 

What’s the most common non-contagious disease in 

the world? 

Tooth decay 
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Three Fundamental Flow Problems
 

 The shortest path problem 

 The maximum flow problem 

 The minimum cost flow problem
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The shortest path problem
 

2 

3 

4 

5 
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4 
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Consider a network G = (N, A) in which there is 

an origin node s and a destination node t. 

standard notation:   n = |N|, m = |A| 

What is the shortest path from s to t?
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The Maximum Flow Problem
 

 Directed Graph G = (N, A). 

 Source s 

 Sink t 

 Capacities uij on arc (i,j) 

 Maximize the flow out of s, subject to 

 Flow out of i = Flow into i, for i ≠ s or t.
 

s 

1 

2 

t 

10 
8 

1 

10 
6 

9 8 

1 

76 

A Network with Arc Capacities (and the maximum flow) 27
 



  
   

  

 
 
 

  

Representing the Max Flow as an LP
 

s 

1 

2 

t 

10, 9 8,8 

1,1 

10,76, 6 

Flow out of i - Flow into i = 0 
for i ≠ s or t. 

max v
max v 
s.t 	 xs1 + xs2 = v s.t. ∑j xsj = v 
 

– 	 = 0-xs1 + x12 + x1t = 0 
 ∑j xij ∑j xji 
 

-xs2 - x12 + x2t = 0 for each i ≠  s or t
 

-x1t - x2t = -v s.t. -∑i xit = -v
 

0 ≤ xij ≤ uij for all (i,j) 0 ≤ xij ≤ uij for all (i,j) 28 
 



 

Min Cost Flows
 

1	 

2

3

4

$4 ,10 

5 Flow out of i - Flow into i = b(i) 

Each arc has a 
linear cost and a 
capacity 

min ∑i,j 	 cijxij 

s.t 	 ∑j xij – ∑j xji = b(i) for each i
 

0 ≤ xij ≤ uij for all (i,j)
 

Covered in detail in Chapter 1 of AMO 
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Where Network Optimization Arises
 

 Transportation Systems 

 Transportation of goods over transportation networks 

 Scheduling of fleets of airplanes 

 Manufacturing Systems 

 Scheduling of goods for manufacturing 

 Flow of manufactured items within inventory systems 

 Communication Systems 

 Design and expansion of communication systems 

 Flow of information across networks 

 Energy Systems, Financial Systems, and much more 
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Next topic:  computational complexity
 

 What is an efficient algorithm?
 

 How do we measure efficiency?
 

 “Worst case analysis” 

 but first … 
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Measuring Computational Complexity
 

 Consider the following algorithm for adding two m × n 
matrices A and B with coefficients a( , ) and b( , ). 

begin 

for i = 1 to m do 

for j = 1 to n  do c(i,j) := a(i,j) + b(i,j) 

end 

What is the running time of this algorithm? 
 Let’s measure it as precisely as we can as a function of n and m. 

 Is it 2nm, or 3nm, or what? 

Worst case versus average case 
 How do we measure the running time? 

 What are the basic steps that we should count? 
32 



Compute the running time precisely.
 

Operation Number (as a function of m,n)
 

Additions
 

Assignments
 

Comparisons
 

Multiplications
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Towards Computational Complexity
 

1. 	 We will ignore running time constants. 

2. 	 Our running times will be stated in terms of 
relevant problem parameters, e.g.,  nm. 

3. 	 We will measure everything in terms of worst 
case or most pessimistic analysis  (performance 
guarantees.) 

4. 	 All arithmetic operations are assumed to take 
one step, 
(or a number of steps that is bounded by a 
constant). 
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A Simpler Metric for Running Time.
 

 Operation Number (as a function of m,n) 

 Additions ≤ c1 mn for some  c1 and m, n ≥ 1
 
 O(mn) steps 

 Assignments ≤ c2 mn  for some c2 and m, n ≥ 1
 
 O(mn) steps 

 Comparisons ≤ c3 mn  for some  c3 and m, n ≥ 1
 
 O(mn) steps 

 TOTAL ≤ c4 mn  for some  c4 and m, n ≥ 1
 
 O(mn) steps 
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Simplifying Assumptions and Notation
 

 MACHINE MODEL: Random Access Machine 

(RAM). 

This is the computer model that everyone is used 

to.  It allows the use of arrays, and it can select 

any element of an array or matrix in O(1) steps. 

 c(i,j) := a(i,j) + b(i,j). 

 Integrality Assumption.  All numbers are integral 

(unless stated otherwise.) 
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Size of a problem
 

 The size of a problem is the number of bits 

needed to represent the problem. 

 The size of the n × m matrix A is not nm. 

 If each matrix element has K bits, the size is 

nmK 

 e.g., if max 2107 < aij < 2108, then K = 108. 

 K = O( log (amax)). 
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Polynomial Time Algorithms
 

 We say that an algorithm runs in polynomial time 

if the number of steps taken by an algorithm on 

any instance I is bounded by a polynomial in the 

size of I. 

 We say that an algorithm runs in exponential time 

if it does not run in polynomial time. 

 Example 1: finding the determinant of a matrix 

can be done in O(n3) steps. 

 This is polynomial time. 
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Polynomial Time Algorithms
 

 Example 2:  We can determine if n is prime by dividing n by 

every integer less than n. 

 This algorithm is exponential time. 

 The size of the instance is log n 

 The running time of the algorithm is O(n). 

 Side note: there is a polynomial time algorithm for 

determining if n is prime. 

 Almost all of the algorithms presented in this class will be 

polynomial time. 

 One can find an Eulerian cycle (if one exists) in O(m) steps. 

 There is no known polynomial time algorithm for finding a 

min cost traveling salesman tour 
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On polynomial vs exponential time
 

 We contrast two algorithm, one that takes 30,000 n3 

steps, and one that takes 2n steps. 

 Suppose that we could carry out 1 billion steps per 

second. 

 # of nodes 

n = 30,   

n = 40,   

n = 50 

n = 60 

30,000 n3 steps2n 

 0.81 seconds 

 1.92 seconds 

3.75 seconds 

6.48 seconds 

steps 

1 second 

17 minutes 

12 days 

31 years 
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On polynomial vs. exponential time
 

 Suppose that we could carry out 1 trillion steps 

per second, and instantaneously eliminate 

99.9999999% of all solutions as not worth 

considering 

 # of nodes 

n = 70,   

n = 80,   

n = 90 

n = 100 

1,000 n10 steps 

2.82 seconds 

10.74 seconds 

34.86 seconds 

100 seconds 

2n steps 

1 second 

17 minutes 

12 days 

31 years 
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Overview of today’s lecture
	

 Eulerian cycles 

 Network Definitions 

 Network Applications 

 Introduction to computational complexity
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Upcoming Lectures
 

 Lecture 2:   Review of Data Structures 

 even those with data structure backgrounds 

are encouraged to attend. 

 Lecture 3. Graph Search Algorithms. 

 how to determine if a graph is connected
 

 and to label a graph 

 and more 
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