MASSACHUSETTS INSTITUTE OF TECHNOLOGY

15.082J/6.855J/ESD.78J – Network Optimization (Fall 2010)

Problem Set 3

Due Session 13 at the <u>beginning</u> of class

Hand in the exercises labeled 1, 2, 3, 4 and 5.

READINGS in AMO.

- Chapter 6, "Maximum Flows: Basic Ideas," pages 166 to 197
- Sections 7.1 to 7.5 in Chapter 7, "Maximum Flows: Polynomial Algorithms," pages 207 to 223

HOMEWORK EXERCISES. Chapters 6 and 7 of AMO

Exercise 6.3

Exercise 6.11

- 1. Exercise 6.12
- 2. Exercise 6.16

Exercise 6.25

Exercise 6.31

3. Exercise 6.30 HINT: Let (i, j) be an arc for which $x_{ij} = u_{ij}$ in every maximum flow. Let x^* be some optimal flow.

Let $S^* = \{k \in \mathbb{N}: \text{ there is a path from } i \text{ to } k \text{ in } G(x^*) \}$. Let $T^* = \mathbb{N} \setminus S^*$. Show that (S^*, T^*) is a minimum capacity s-t cut and that $i \in S^*$ and $j \in T^*$.

4. Exercise 6.34 (For true statements, it suffices to give a brief explanation)

Exercise 7.3

5. Exercise 7.8 (For true statements, it suffices to give a brief explanation)

MIT OpenCourseWare http://ocw.mit.edu

15.082J / 6.855J / ESD.78J Network Optimization Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.