15.082J & 6.855J & ESD.78J Visualizations

Dijkstra's Algorithm

An Example

Initialize

Select the node with the minimum temporary distance label.

An Example

Initialize

Select the node with the minimum temporary distance label.

Update Step

Update Step

The predecessor of node 3 is now node 2

Update

d(5) is not changed.

Update

d(4) is not changed

Update

d(6) is not updated

There is nothing to update

End of Algorithm

All nodes are now permanent
The predecessors form a tree
The shortest path from node 1 to node 6 can
be found by tracing back predecessors

MIT OpenCourseWare http://ocw.mit.edu

 $15.082 J \, / \, 6.855 J \, / \, ESD.78 J$ Network Optimization Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.