Network Optimization

Depth First Search

Initialize

Mark node 1 and add it to LIST

Select a node i in LIST

If node i is incident to an admissible arc...

If endpoint is unmarked, then mark it and add it to LIST.

Select the last node on LIST

Select Node 2.

If node i is incident to an admissible arc...

Scan arc out of node 2.

Mark node 4 and add it to LIST.

Select

If node i is incident to an admissible arc...

Mark 8 and add it to LIST.

Select

If node i is not incident to an admissible arc...

Select

If node i is incident to an admissible arc...

Select

If node i is incident to an admissible arc...

Select the last node on LIST

If node i is incident to an admissible arc...

Select the last node on LIST

If node i is incident to an admissible arc...

Select the last node on LIST

Scan arc (7,4)

Scan arc (7,5)

Scan arc (7,8)

If node i is <u>not</u> incident to an admissible arc...

Scan (9,4)

Delete 9 from LIST

Scan arc (6.7)

Delete node 4

Scan arc (2,5)

Delete node 2

Scan arc (1,3)

Scan arcs (3,5) and (3,6)

Delete node 3

Scan arc (1, 5)

Delete node 1

LIST is empty

The depth first search tree

Note that each induced subtree has consecutively labeled nodes

MIT OpenCourseWare http://ocw.mit.edu

 $15.082 J \, / \, 6.855 J \, / \, ESD.78 J$ Network Optimization Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.