
Chapter 10 Notes, Regression and Correlation  

Regression analysis allows us to estimate the relationship of a response variable 
to a set of predictor variables 

Let 

x1, x2, · · · xn be settings of x chosen by the investigator and 
y1, y2, · · · yn be the corresponding values of the response. 

Assume yi is an observation of rv Yi (which depends on xi, where xi is not ran­
dom). 

We model each Yi by 
Yi = β0 + β1xi + ti 

where ti is iid noise with E(ti) = 0 and Var(ti) = σ2 . We usually assume that ti 
is distributed as N(0, σ2), so Yi is distributed as N(β0 + β1xi, σ2). 

Note: it is not true for all experiments that Y is related to X this way of course! 
Always scatterplot to check for a straight line. 
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For a good fit, choose β0, β1 to minimize the sum of squared errors. 

Minimize 
n nn n 

2 2Q = (yi − f(xi)) = (yi − (β0 + β1xi)) ← “least squares” 
i=1 i=1 

To minimize Q, set derivatives to 0 and solve for β's. Call the solutions β̂0, and 
β̂1. 

n   n∂Q 
0 = = −2 yi − (β̂0 + β̂1xi) (1)

∂β0 i=1
n   n∂Q 

0 = = −2 xi yi − (β̂0 + β̂1xi) . (2)
∂β1 i=1 

Rewrite equation (1): 
n n nn n n 

ˆ ˆyi − β0 − β1xi = 0 
i=1 i=1 i=1  
n n n n 

yi − nβ̂0 − β̂1 xi = 0 (pull β’s out of the sums) 
i=1 i=1  

n n n n1 
yi − β̂0 − β̂1 

1 
xi = 0 (divide by n) 

n n 
i=1 i=1 

ȳ − β̂0 − β̂1x̄ = 0 
ˆ = ȳ − ˆ x.β0 β1 ̄
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What does this mean about the least square line?  

ˆSolve equation (2) for β1 

n n n
2ˆ ˆxiyi − xiβ0 − xi β1 = 0 

i=1 i=1 i=1 

nnn 

n n n
2 xiyi − β̂0 xi − β̂1 x = 0 i 

i=1 i=1 i=1 

nnn 

n n n
2 xiyi − (ȳ − β̂1x̄) xi − β̂1 x = 0 (using previous page) i 

i=1 i=1 i=1 nn n n n

n 

n 

n 

n 

n
n 

   2 

xi + β̂1 
1 2− β̂1 xxiyi − ȳ = 0 (using definition of x̄) xi i n 

i=1 i=1 i=1 
n 

i=1 
n 
i=1 xiyi − 1 n 

i=1 xi 
n 
i=1 xi)

2 
i=1 yiβ̂1 =  n (using definition of ȳ) n 2 − 1 

i=1 x ( i n 

Consider the expressions (which we’ll substitute in later):  n 

n 

n 

n 

n n n

s̃xy = (xi − x̄)(yi − ȳ) = xiyi − xiyi (skipping some steps) 
n 

i=1 i=1 i=1  
n n n 

n
n 

1  

1  
s̃xx =  2(xi − x̄)2 = xi −  2 (just sub in x for y in previous eqn)  x i n 

i=1 i=1 i=1 

where s̃xy is the sample covariance from Chapter 4 times n − 1. Look what 
happened: 

s̃xy
β̂1 = . 

s̃xx 

Put it together with the previous result and we get these two little (but important 
equations): 

s̃xy
β̂1 = 

s̃xx 

β̂0 = ȳ − β̂1x̄

Now there is an easy way to find the LS line. 
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**********Procedure for finding LS line************  

Given: 

x1, · · · , xn 

y1, · · · , yn 

we compute x̄, ȳ, ̃sxy, ̃sxy. Then compute 

β̂1 = 
s̃xy 

s̃xx 

β̂0 = ȳ − β̂1 ̄x. 

And the answer is: 
y = β̂1x + β̂0. 

Then if you want to make predictions you can use this formula - just plug in the 
x you want to make a prediction for. 

Let’s examine the goodness of fit. We will define SSE, SST, and SSR. Consider:  nn
SSE = sum of squares error = (yi − ŷi)2 

i=1 

where ŷi = β̂1xi + β̂0, these are your model’s predictions. Recall β̂0 and β̂1 were 
chosen to minimize the sum of squares error (SSE). 

The total sum of squares (SST) measures the variation of y’s around their mean: nn
SST = sum of squares total = (yi − ȳ)2 = s̃yy. 

i=1 

It turns out: nn
SST = (yi − ȳ)2 

i=1 nnn n

= (yi − ŷi)2 + (ŷi − ȳ)2 = SSE + SSR 
i=1 i=1 

where SSR is called the “regression sum of squares.” This is the model’s variation 
around the sample mean. 
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Consider 
SSR model’s variation 2 r = = = “coefficient of determination.” 
SST total variation 

It turns out that r2 is the square of the sample correlation coefficient r = √ sxy . sxxsyy 

Let’s show that. First simplify SSR: 
nn 

SSR = (ŷi − ȳ)2 

i=1  
n n 2 

= β̂0 + β̂1xi − (β̂0 + β̂1x̄) note that the β̂0’s cancel out 
i=1 

nn2 2 
= β̂1 (xi − x̄)2 = β̂1 s̃xx. (3) 

i=1 

And plugging this in, 
2 2 2 2s̃ ˜ s̃ s

2 SSR β̂1 s̃xx xysxx xy xy
r = = = = = ,

2SST s̃yy s̃xxs̃yy s̃xxs̃yy sxxsyy 

where we just cancelled a normalizing factor in that last step. So after we take 
2the square root, that shows r really is the square of the sample correlation 

coefficient. 

2 SSR 2Back to SST = SSR + SSE and r = SST . If r = 0.953, most of the total 
variation is accounted for by the regression, so the least square fit is a good fit. 
That is, r2 tells you how much better a regression line is compared to fitting with 
a flat line at the sample mean ȳ. 

Note: Compute r using this formula: √ sxy , so you do not get the sign wrong sxxsyy  
SSR from taking the square root, r = ± .SST 
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To summarize, 

• We derived an expression for the LS line 

Sxy
y = β̂1x + ˆ where ˆ = and ˆ = ȳ − ˆ x.β0, β1 β0 β1 ̄

Sxx 

2 SSR • We showed that r = . Its value indicates how much of the total varia-SST 
tion is explained by the regression. 

One more definition before we do inference. The variance σ2 measures disper­
sion of the yi’s around their means µi = β0 + β1xi. An unbiased estimator of σ2 

turns out to be 
n (yi − ŷi)2 SSE 2 i=1s = = 
n − 2 n − 2 

We lose two degrees of freedom from estimating β0 and β1, that is why we divide 
by n − 2. 

Chapter 10.3 Statistical Inference 

We want to make inferences on the values of β0 and β1. Assume again that we 
have: 

Yi = β0 + β1xi + ti 
where ti is iid noise and is distributed as N(0, σ2). Then it turns out that β̂0 and 
β̂1 are normally distributed with  

E( β̂0) = β0, SD( β̂0) = σ
n 
i=1 x

2 
i 

n ̃Sxx 

E( β̂1) = β1, SD( β̂0) = 
σ 
S̃xx 

It also turns out that S2, which is the random variable for s2 = 
n 
i=1(yi−ŷi)2 

n−2 obeys: 

(n − 2)S2 
∼ χ2 

n−2. σ2 

6  

∑

∑



�
ˆ ˆWe can do hypothesis tests on β0 and β1 using β0 and β1 as estimators for the 

means of β0 and β1. We can use 

n 
i=1 xi 

2 s 
SE(β̂0) = s , SE(β̂1) = √ (4) 

ns̃xx s̃xx 

as estimators for the SD’s. So we can ask for 100(1 − α)% CI for β0 and β1: 

ˆβ0 ∈ [β̂0 − tn−2,α/2SE(β̂0), β0 + tn−2,α/2SE(β̂0)] 
β1 ∈ [β̂1 − tn−2,α/2SE(β̂1), β̂1 + tn−2,α/2SE(β̂1)] 

Hypothesis tests (usually we do not test hypotheses on β0, just β1) 

H0 : β1 = β0 
1 

H1 : β1  1 .= β0 

Reject H0 at level-α if 
β̂1 − β0 

1|t| = > tn−2,α/2. 
SE(β̂1) 

***Important: If you choose choose β0 = 0, you are testing whether there is a 1 
linear relationship between x and y. If you reject β10 = 0, it means y depends on x. 

β̂1Note that when β10 = 0, t = . 
SE(β̂1) 

Analysis of Variance (ANOVA) 

We’re going to do this same test another way. ANOVA is useful for decomposing 
variability in the yi’s, so you know where the variability is coming from. Recall: 

SST = SSR + SSE 
n• SST is the total variability (df = n − 1 from constraint ( ̂yi − ȳ)2 ),i=1

• SSR is the variability accounted for by regression and 

• SSE is the error variability (df = n − 2). This leaves one df for SSR. 

A sum of squares divided by df is called a “mean square”. 
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SSR • MSR = “mean square regression” 1 
n 

yi)
2

SSE 2 i=1(yi−ˆ• MSE = = s = “mean square error” n−2 n−2 

Consider the ratio 
MSR SSR 

F = = 
MSE s2 

β̂2 
1 s̃xx 

= from (3) 
2s

2
β̂1 

= √ 
s/ s̃xx 

2
β̂1 2 = = t from (4). 

SE(β̂1) 

Hey look, the square of a Tv r.v is an F1,v r.v. Actually that’s always true: 
Consider: 

X̄−µ0√X̄ − µ0 σ/ n Z 
T = √ = = 

S/ n S2/σ2 S2/σ2 

Z2/1 
T 2 = = F1,v

S2/σ2 

∼ χ
2 
νsince Z2 ∼ χ2

1 and Sσ2

2 

ν . Therefore we have t
2 = f1,n−2,α. n−2,α/2 

How come α/2 turned into α?  

Back to testing: 

H0 : β1 = 0  
H1 : β1 = 0  

MSR We’ll reject H0 when F = > f1,n−2,α.MSE 

Note: This is just the square of the previous test. We also do it this way because 
it is a good introduction to multiple regression in Chapter 11. 
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ANOVA (Analysis of Variance) 

ANOVA table - A nice display of the calculations we did. 

Source of variation SS d.f. MS F p 

Regression SSR 1 MSR = SSR 
1 F = MSR 

MSE p-value for test 

Error SSE n − 2 MSE = SSE 
n−2 

Total SST n − 1  

The pvalue is for the F-test for H0 : β1 = 0, H1 : β1 = 0. 
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