Basic Concepts of Inference

Statistical Inference is the process of making conclusions using data that is subject to
random variation.

Here are some basic definitions.

e Bias(d) := E(A) — 6, where 0 is the true parameter value and 6 is an estimate of it
computed from data.

An estimator whose bias is 0 is called unbiased. Contrast bias with:

e Var(f) = E(0 — E())2. Variance measures “precision” or “reliability”.

Low bias Low bias High bias High bias
Low variance High variance Low variance High variance
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e Mean-Squared Error (MSE) - a way to measure the goodness of an estimator.
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The first term is Var(é). In the second term, the outer expectation does nothing because the
inside is a constant. The second term is just the bias squared. In the third term, the part
E(#) — 0 is a constant, so we can pull it out of the expectation. But then what’s left inside

the expectation is E[§ — E(#)] which is zero, so the third term is zero.
A A\ 2 ~
MSE(0) = (Bias(9)> + Var(6). (1)

Perhaps you have heard of the “Bias-Variance” tradeoff. This has to do with statistical
modeling and will be discussed when you hear about regression. It boils down to a tradeoff
in how you create a statistical model. If you try to create a low bias model, you risk that
your model might not explain the data well and have a high variance and thus a larger MSE.
If you try to create a low variance model, it may do so at the expense of a larger bias and
then still a larger MSE.



e We will now show why we use:
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8= Z(xl — 7)? rather than sfmng = Z:(x, — )%
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The answer is that s% is an unbiased estimator for o2!

Let’s show this. We have to calculate Bias(5?) = E(S?) — 0? which means we need E(S5?).
Remember that S? follows a (scaled) chi-square distribution, and if we go back and look in
the notes for the chi-square distribution, we’ll find that the expectation for S? is 2. (It’s
one of the last equations in the chi-square notes). So, Bias(S?) = 0% — 02 = 0. This is why
we use n — 1 in the denominator of S2.

However, it turns out that the mean square error is worse when we use n — 1 in the
denominator: MSE(S?) > MSE(S?,...)

wrong
Let’s show this. Again going back to the notes on the chi-square distribution, we find

that:

204
Var(5?) = :
ar(S<) —
Plugging this in to equation (1) using S? as the estimator 9, we find:
2 4
MSE(S?) = Var(5?) + (Bias(5%))" = — 0,
n —
whereas
2 . . 2n —1 4
MSE(S5,ong) = (skipping steps here) = 50
And if you plot those two on the same plot, you'll see that MSE(S?) is bigger than
MSE(ngrong)'
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MSE(S?) (top) and MSE(S?,.,.) (bottom) versus n for o2 = 1.

wrong

So using S? rather than Sfmng actually hurts the mean squared error, but not by much and

actually the difference between the two shrinks as n gets large.

e The standard deviation of 6 is called the standard error.

SE(z) = s/vn

is the estimated standard error of the mean for for independent r.v. - this appears a lot.
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