15.075 Statistical Thinking and Data Analysis

Computer Exercises 2 Due November 10, 2011

Instructions: Please solve the following exercises using MATLAB. One simple way to present your solutions is to copy all of your code and results (plots, numerical answers, etc.) into a Word document, which you should submit in class. There is no online submission. **Do NOT share code!**

Exercise 1

In this exercise, we demonstrate the Central Limit Theorem, where each X_i is exponential.

- a. Generate 1000 random numbers from the exponential distribution with $\lambda = 6$, and plot them in a histogram. This should give you an idea of what the exponential distribution looks like.
- b. For n = 2, repeat the following 1000 times: Generate a random sample of n numbers from the exponential distribution with $\lambda = 6$.
- c. Compute the sample mean of the *n* numbers and standardize it using the true mean and standard deviation of the distribution.
- d. Make a histogram and normal plot of the 1000 sample means.
- e. Repeat (b)-(d) for n = 10, 20, and 100. Put all four histograms and all four normal plots in the same window. Comment on their shapes.

Solution

Here is the script and the results for my iterations:

```
clear all;
clc;
close all;
num_samples = 1000;
lambda = 6;
mu = 1/lambda;
sigma = mu;
% Part a
% Generate 1000 random numbers from the exponential distribution with
% lambda=6
x = exprnd(mu,num_samples,1);
% Plot a histogram
hist(x,20);
title('Histogram of 1000 exponential random variables with lambda = 6');
% Part b,c,d,e
sample_sizes = [2 10 20 100];
figure;
for i = 1:length(sample_sizes)
    sample_size = sample_sizes(i);
    x = exprnd(mu,num_samples,sample_size);
    sample_mean = mean(x');
    z_score = (sample_mean - mu)/(sigma/sqrt(num_samples));
```

```
% Plot a histogram z-scores
subplot(2,2,i);
hist(z_score);
title(['Sample size n = ', num2str(sample_size)])

% Plot a normal plot of z-scores
subplot(2,2,i);
normplot(z_score);
title(['Sample size n = ', num2str(sample_size)])
end
```


The normal plot for n=2 shows that the distribution of sample means is still skewed right since the exponential distribution has a very long positive tail. As n increases, the distribution of sample means becomes increasingly symmetric. With n=100, the curve in the normal plot is fairly straight, implying the distribution of sample means is approximately normal.

Exercise 2

Solve Problem 6.23 from the book.

Solution

- a) Obviously the α -risk is 0.05 from definition. Let's calculate the β -risk of the rule if μ =1. The β -risk is just β = 1- π (1) = 1 Φ [$-z_{\alpha}$ + $\frac{(\mu \mu_0)\sqrt{n}}{\sigma}$] = 1- Φ (-1.645+3) = 1- Φ (1.355) = 0.0877.
- b) Here is the script and the results for my iterations:

```
clear all;
clc;
close all;
% Parameters
level = 0.05;
mu_0 = 0;
mu = 1;
sigma = 1;
n = 9;
num_samples = 100;
% Reject if sample mean is greater than critical_value
critical_value = mu_0+norminv(1-level)*sigma/sqrt(n);
% Generate 100 samples of size n with mean mu_0
x = sigma*randn(num_samples,n)+mu_0;
x_bar = mean(x');
a_risk = sum(x_bar>critical_value)/num_samples;
% Generate 100 samples of size n with mean mu
x = sigma*randn(num_samples,n)+mu;
x_bar = mean(x');
b_risk = sum(x_bar<critical_value)/num_samples;</pre>
>> a_risk
a risk =
     0.0500
>> b_risk
b_risk =
     0.0700
```

The results are close to their theoretical values.

Exercise 3

Solve Problem 6.25 from the book.

Solution

Here is the script and the results for my iterations:

```
clear all;
clc;
close all;
sigma = 1000;
n = 10;
% We reject when x_bar is greater than the critical value
critical_value = 10500;
mu = 9600:200:11600;
power = 1-normcdf((critical_value-mu)*sqrt(n)/sigma);
oc = 1-power;
plot(mu,power);
grid;
title('Power');
figure;
plot(mu,oc);
grid;
title('OC');
```


Exercise 4

A thermostat used in an electrical device is to be checked for the accuracy of its design setting of 200°F. Ten thermostats were tested to determine their actual settings, resulting in the following data:

202.2	000 4	000 5	000 5	00/0	400.0	0007	222	004.0	100.0
202.2	203.4	200.5	202.5	206.3	198.0	203.7	200.8	201.3	199.0

Assume the settings come from a normal distribution. Using $\alpha = 0.05$, perform a hypothesis test to determine if the mean setting is greater than 200°F. What are the null and alternative hypotheses? Which test do you use and why? Explain your conclusion using

- a. An appropriate confidence interval.
- b. A critical value from the distribution of the test statistic.
- c. A p-value.

Solution

```
The hypotheses are H_0: \mu = 200.
```

 H_1 : $\mu > 200$.

200.3729

Inf

We use a *t*-test since we do not know the true variance, and the sample size is small.

```
clear all;
clc;
close all;

x = [202.2,203.4,200.5,202.5,206.3,198.0,203.7,200.8,201.3,199.0];
mu = 200;
alpha = 0.05;

[h p ci stats] = ttest(x,mu,alpha, 'right')

h =
    1

p =
    0.0227

ci =
```

stats =

tstat: 2.3223

df: 9

sd: 2.4102

For all the following reasons, we reject H_0 .

- a. The lower 95% CI is [200.3729, ∞), which does not contain 200.
- b. The observed value of the *t*-test statistic is 2.3223, which is larger than $t_{9,0.05}$ = 1.833.
- c. The *p*-value is 0.0227, which is smaller than the significance level $\alpha = 0.05$.

MIT OpenCourseWare http://ocw.mit.edu

15.075 J / ESD.07 J Statistical Thinking and Data Analysis Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.