Pset #3 Solutions

Problem 1.

Becanse B is continmuous the event {limsup,_, . B(t) = oo} is the same as the event {sup,cg+ B(t) = oo}
(check from the definition that they are indeed the same. Another definition of limsup,_, . B(t) = oo
is that for all M = 0 and all ¢ > 0, there exists t' > t such that B(t') = M). For anv k& = 0, A
be the event {sup,., B(t) = k}, and A = {limsup,_, _ B(t) = oo}. Then, A = Mgz, and thus
P(A) = lim, P(My <254, ) = lim, P(A;). Define the following sequence of stopping times for our Brownian
motion:

=1

ta =ty + (k + [B(ty)])?
ts = ta + (k +|B(ta)])*
tnyr = tn + (k+|B(ta)])?

P((Ar)°) < P(VE:, B(t;) < k) = [[B(Bltns1) < k|¥m < n, Bltm) < k) = [[B(Bltas) < k| B(ta) < k)

n=l

For any 1, ]P(.Bhl-fl k| B(t,) 2 k) =P(B(tag1) — Blt,) = k= B(t,)|B;, = k) =P(B(ta11) — Blt,) =
k+|B(t,)||B:, = k). By the strong Markov property of Brownian motion, B(f,,,)— B(t,) is a Gaussian
variable with standard deviation k + |B(f, )|, and hence P(B(f,41) — Bltn) < k+ |B(t.)|| B, < k) < a,
where a is the probability P(X < 1), where X is a Gaussian variable with variance 1 (a ~ 0.841). As a
result,

P((Ax)°) < liEn a” =10

and thus P(A4;) =1, and F(4) = 1 QED.

Problem 2(a)

We use the decomposition
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Each B( %J - B( %’J is an independent (for n fixed) random variable with variance % In other words,
we can rewrite
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where X, is defined as (/RB(*£L) — \/EB(%))Q. Note that the X;,, are all identically distributed
random variables (in particular the distribution does not depend on n). Also, X; ,, follows a chi-squared
distribution (it is the square of a normal), has mean 1 (its mean is the variance of our normal random
variable, which was scaled to have variance 1), has bounded moments, in particular hounded second
and fourth moments. We obtain that
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We apply our special form of the SLLN and conclude that
QL. B)

converges to zero almost surely.



2 Problem 2b (Based on Tetsuya Kaji’s solutions)

Proof Forafixedn, let A, ; = (B(t;) — B(t; _;))* = (t; = t;_y). ty = 0 and
thy1 =9 Then A, ; ar inﬂep&nﬂem w.rt. the probability space of Brownian

motion. with mean (0 and Q(IL,. B) — T Z A, ;. Consider the fourth
moment
|. . z. _”1{ “i—l” - 1{‘5“!) - B{ti'—l”ﬁ{ti - ti—l]' + 'EJ‘{B{T!:I

—B{n_ln (ti — tica)’ — 4(B(t:) — B(ti—1))(t: — ti1)” + (£ — ti1)"]
=(105 — 60 + 18 — 4 + 1)(t; — t,_)* =60(¢; — #,_,)*

where the expectation -] is with respect to the probability space of Brown-

ion motion, and we have used the moments lli".[}:fzk_' = g2 (2k)1/(2%k") for
Z ~ N(0,”). Then we have that

E[{EJ{HHHJ_T‘)_ZE‘ i, ) +ZJ‘E" T, z. rt _.l.

i ]
=fjﬂZ{ =t ) Y (=t ) (=)
: oy
{mz ti—ti )+ 23 (-t + (=0
i3

<(2n +60) > (t:—ti1)*

i
Recall from the order statistics theory that #; — #; _; follows a beta distnbution

with ¢ = 1 and 5 = n. or Befa(l,n). The fourth moment of Beta(l,n) is

known to be
24

n4+1)n+2)n+3)n+4)

Hence we have

24(2n + 60)n

E[(Q(ILn, B) = T)*] < (2n +60) ) _(t: — ti—1)’*

(m4+1)n+2)n+3)n+4)

where lli.[ is with respect to the probability space of both Brownian motion and
uniform sampling. By Markov's inequality, we have

ﬂn{{fg{llrzj - T:I'1 e ﬁj < E[{Q{llm B]I — ']‘j'1_'
? €
24(2n + 60)n

eln+1)n+2)(n+3)(n+4)

which is summable across i, Borel-Cantelli lemma gives the conclusion. O



Problem 3.

By the definition of conditional expectation, it suffices to show that for every B € G, E[X1g]
E[E[X]1g]. First, assume that X > 0. Observe that by the tail formula for expectation,

]

= P{X > y}HP(B)dy by independence
0

In the general case,
E[X|g] = E[X* — X7|G] = E[X*|g] - E[X |¢] = E[X ] + E[X ] = E[X],

giving the result.



Problem 4.
1. Construct a function of the state p(x) for v € Z such that p(Q(t)) is a martingale.
Let @(x) = ? " Then, note that since @ is one-to-one, the event {Q(t) = z} is the same as the
event {p((Q(t)) = p(2)}. For some 2 € Z, it follows that

E[p(Q(t +1)) | 9(Q(1) = ¢(2)] = E[p(Q(t + 1) | Q(t) = 2]

(=
) (5
o) ()
(52

= »(Q(1)

=E Qi) = '>:|

thus @(Q(t)) is a martingale.

First, we claim that for every ¢ = 2, if B; is the event that for all ¢, 0 < Q(t) < i, P(B;) = 0. Suppose
at time ¢ we are in (0,i). Then 1:'l.r11:]1 at least probability p* = 0, Q(#+4) = 4, as this is the probability
our walk increases in each of the ¢ periods. For j = 0.1,.. ., let By; be the event that we remain
between 0 and ¢ on the time interval [i7.4(7 + 1)), s0 Bi = U;,i Eij. 'We compute that

P(B;) =P (Hﬂ,j)

- ﬁ P (B,-j :[j E‘.-;:)

i=0

< ﬁ (1-p")
=0
—0.

Thus for each 4, with we will leave the interval [0,d] almost surely. Let 7, = min{t € M : Qit) =i},
and for each ¢ = z, let T; = min{r;, m}. Each r; and each T are stopping times. Let 4; = {mo < =},
and g; = P 4;). Siuce w(Qif AT 15 a bounded martingale, by considering the value at ¢ = T,-, we
obtain that

plz) = E[p(Q(0))] = E [p(QT3)] = gupl(0) + (1 — g )eeli)

vielding

1—ph " 1—ph’
(=) -
Clearly the event that we ever hit zero, denoted by A, is given by

Y

i=1



w £ A; for some i, then as we hit zero before we hit 4, we hit zero. Further, 4; C 4,4 for all ¢, as we
cannot hit ¢ 4+ 1 until we hit i, so hitting zero before i forces ns to hit zero before ¢ + 1 as well. Thus
we can apply contimity from below to compute

as if w & A, then we hit zero at some finite time #, so we must hit zero before we hit = 4 £, and if

Fid) = E]EELQIPL:LJ = t_1_1‘:1'1

)

(1_;2)3_(1_;2)5=(1_p)3:

p

as p < 1/2 implies {1 — p)/p < 1. Therefore the probability that the random walk never hits zero is
given by

L 1—py*
|- P(A)=1- (—p) ,
P
giving the result.

Problem 5.

1
Hint: Consider (X; — X;_1)%.
As

0< (X, —X; )2 =X, —2X; X, + X7,
taking expectations we obtain that
0 <E[X]] —2E[X;X, 1]+ E[X]_]
= E[X]] - 2B[E[X; X, |F,; ]| + E[X]_)]
= E[X}] — 2B[X; 1 E[X;|F_1]] + B[X} ]
=E[X]] - 2E[X} || +E[X] ,]
and thus
E[X2 ] <E[x?]

as claimed.

If X, =X, as., then Var(X, — X;) = 0. From here, we compute that
0= Var(X, — X;) = E[(X, - X1)] - E[X,, — X,]°.
Furthermore, we have
EX,— X? =E[E[X, — X |F._1]]? =E[X,._; — X1,
and
E[(X, — X1)%] = EE[(X, — X1)*|F4]]
= E[E[X] - 2X,. X, + X{|F]
= EE[X2|Fnci]] + E[-2X o1 X1 + X7
=EXZ + E[-2X,_1X; + X7
>EX2 |+ E[-2X,._1 X1 + X7
—RE[X2 2X, 1 X1 + X7

n—=1"

= E[{;Y,—,_1 — JY1)2].



Thus
0=E[(X, - X1)}| —EX. - X1 2EB[(X,_1 — X1} —E[X_1 — X1]? = Var(X._; — X1 ).

As variances are nonnegative, Var(X,_; — X1) =0, s0 Xn_y = Xy = X, a.s.. The result follows by
induction.

Problem 6.
a).
Suppose there erists a countably infinite strictly increasing sequence t, € By, n = 0 such that

P(T € {t, :ne N} U{oc}) =L

Emulate the proof of the discrete time processes to show that Xeap, for t € Ry is o submartingale .
Fix arbitrarv 0 < & < t, and let 1y and ns be positive integers such that

tni £ i < f-:r.i-i-l

and
by — 1< 8 < tn,

which implies t,,, < t,,. We want to show that BE[X g | Fs] 2 Xear-
First, using the exact same proof as in the lecture notes, we can show that the sequence Y, = X; a7
is a submartingale with respect to the sequence F! = F; . Briefly, the sequence H,, = {T = t,} is
predictable with respect to JF),, so that the the sequence 7 . Hn(Xy , — X, ) is a martingale,
and this sequence is equal to =Xy, + X¢ a7, which gives us the desired result. Next, we show| the
following two inequalities:

EXinr | Fe,,] 2 Xi, ar

and
]E[JYt“Q.-'\T | F.s] 2 “AanT

For the first, write

E[Xiat | Fe,,]

E[UT:MM + 1Tg:n1JzYeAT |ftn1]
]E[lT;,,“lxc + lree,, Xr |-’re..1]
]E[l'r}e.uxc |-}Ce.l1] + ]E[ngeMXT |-Fe“1]
[
[

Ellrst,, E[X¢ | Fe, | | Feo |+ Ellr<,, Xr | F,., ]
E lTbt‘ll “Yt'u | "rfm] + E[1T531u Xr | -rinl]
2E[X:, a1 | Fen,l = Xip

I

The second equality comes from the faet that if T > t,,,, then we necessarily have T" = #,,, 41 > t. Third
equality comes from linearity of expectations. The fourth comes from the definition of conditional
expectation. The first inequality comes from the fact that X, is a martingale. The second comes from
the fact that the sequence Xy sr is a martingale w.r.t. /. The inequality IE‘.[XBM,\T | Fo] 2 Xonr is

shown similarly. Finally, we sitnply use the tower property repeatedly and our two inequalities:
E[Xear | Feo] =EE[Xiar | Fr,, || Fe
2E[X,, ar | Fo] = EE[X,, ar | too] | Fe]
ZE[X!”AT | Fo] = XNanr
QED



b).

Given a general stopping time T taking values in By W oo}, consider a sequence of random variables T,
defined by Ty(w) = k/2" for k=1,2,..., if T(w) € [(k—1)/2" k/2"), and Ty, (w) = o0 if T{w) = oo.
Establish that T, is a stopping time for every n.

Let t,, x = &=, The event {T,, < t,,;} is equal to the event {T < t,,;} = U, {T < t,; — 1/n}. Since T
is a stopping time, each event {T" < ¢, ;, — 1/n} is measurable wr.t 7, ., and {T,, <1, ;} is therefore
measurable with respect to JF, . This proves that T, is a stopping time.

C).
Suppose the submartingale X, is in Lo, namely E[X?] < oo for all t. Show that X7 s is a submartingale
as well.
Hint: Use part 5b, the Doob-Kolmogorov ineguality, and the Dominated Convergence theorem.r
For any real mumber z, let C'(x) be the closest integer strictly greater than » (C'(1.1) = 2,C(2) = 3).
With this definition, it is easy to show that T, = ﬂg:_z‘)_ Note that T, ., —T,, = Q&E‘E—fﬂ@ <0,
so that T}, decreases. Moreover, |T,, — T| < 2# s0 that T, converges surely to T. Let s < t he two
positive real.

]E[XMT |-Ts] :]E[Xi.-‘\T |fs] - ]E[XMT" |fs] + IE:[XU\T,z | fs]
By part a, we obtain

EXing | Fa] 2EXinr | Fo] — E[Xiar, | Fs] + Xeat,
SE[X it | Fs] —E[Xinr, | Fel + Ko, — Xant + Xenr

Because X is RCLL and T, decreases to T , we obtain that X, converges to X_,r. Therefore, if
we can show that lim, E[X;,r | F,] —E[X a7, | F.] converges to 0, by taking limits we will obtain that
E[X,.r | F.] = X.n7, and we will be done. Note that since T, is decreasing, | X, .z, | is upper bounded
by supy 4 X¢. By Doob-Kolmogorov, P(supp 4 Xe = =) < ijii] We conclude that E[supp | Xe[] is
finite; and by the conditional dominated convergence theorem, lim, BE[X;ar | Fa] — E[Xint, | Fe], and
a0, E[/Yt.-'\’l" |fs] = AanTs QED
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