MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.265/15.070 Fall 2013 Problem Set 3 due 10/23/2013

Problem 1. Let B be standard Brownian motion. Show that $\mathbb{P}(\limsup_{t\to\infty}B(t)=\infty)=1$.

- **Problem 2.** (a) Consider the following sequence of partitions $\Pi_n, n=1,2,\ldots$ of [0,T] given by $t_i=\frac{i}{n}, 0\leq i\leq n$. Prove that quadratic variation of a standard Brownian motion almost surely converges to $T\colon \lim_n Q(\Pi_n,B)=1$ a.s., even though $\sum_n \Delta(\Pi_n)=\sum_n 1/n=\infty$.
- (b) Suppose now the partition is generated by drawing n independent random values $t_k=U_k, 1\leq k\leq n$ drawn uniformly from [0,T] and independently from the Brownian motion. Prove that $\lim_n Q(\Pi_n,B)=T$ a.s. Note, almost sure is with respect to the probability space of both the Brownian motion probability and uniform sampling.

Problem 3. Suppose $X \in \mathcal{F}$ is independent from $\mathcal{G} \subset \mathcal{F}$. Namely, for every measurable $A \subset \mathbb{R}, B \in \mathcal{G}$ $\mathbb{P}(\{X \in A\} \cap B) = \mathbb{P}(X \in A)\mathbb{P}(B)$. Prove that $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$.

Problem 4. Consider an assymetric simple random walk Q(t) on \mathbb{Z} given by $\mathbb{P}(Q(t+1)=x+1|Q(t)=x)=p$ and $\mathbb{P}(Q(t+1)=x-1|Q(t)=x)=1-p$ for some 0< p<1.

- 1. Construct a function of the state $\phi(x), x \in \mathbb{Z}$ such that $\phi(Q(t))$ is a martingale.
- 2. Suppose Q(0) = z > 0 and p > 1/2. Compute the probability that the random walk never hits 0 in terms of z, p.

Problem 5. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ consider a sequence of random variables X_1, X_2, \ldots, X_n and σ -fields $\mathcal{F}_1, \ldots, \mathcal{F}_n \subset \mathcal{F}$ such that $\mathbb{E}[X_j | \mathcal{F}_{j-1}] = X_{j-1}$ and $\mathbb{E}[X_j^2] < \infty$.

1. Prove directly (without using Jensen's inequality) that $\mathbb{E}[X_j^2] \geq \mathbb{E}[X_{j-1}^2]$ for all j = 2, ..., n. Hint: consider $(X_j - X_{j-1})^2$.

2. Suppose $X_n = X_1$ almost surely. Prove that in this case $X_1 = \ldots = X_n$ almost surely.

Problem 6. The purpose of this exercise is to extend some of the stopping times theory to processes which are (semi)-continuous. Suppose X_t is a continuous time submartingale adopted to $\mathcal{F}_t, t \in \mathbb{R}_+$ and T is a stopping time taking values in $\mathbb{R} \cup \{\infty\}$. Suppose additionally that X_t is a.s. a right-continuous function with left limits (RCLL).

- (a) Suppose there exists a countably infinite strictly increasing sequence $t_n \in \mathbb{R}_+, n \geq 0$, such that $\mathbb{P}(T \in \{t_n, n \geq 0\} \cup \{\infty\}) = 1$. Emulate the proof of the discrete time processes to show that $X_{t \wedge T}, t \in \mathbb{R}_+$ is a submartingale.
- (b) Given a general stopping time T taking values in $\mathbb{R}_+ \cup \{\infty\}$, consider a sequence of r.v. T_n defined by $T_n(\omega) = \frac{k}{2^n}, k = 1, 2, \ldots$ if $T(\omega) \in [\frac{k-1}{2^n}, \frac{k}{2^n})$ and $T_n(\omega) = \infty$ if $T(\omega) = \infty$. Establish that T_n is a stopping time for every n.
- (c) Suppose the submartingale X_t is in \mathbb{L}_2 , namely $\mathbb{E}[X_t^2] < \infty, \forall t$. Show that $X_{T \wedge t}$ is a submartingale as well.

Hint: Use part (b), Doob-Kolmogorov inequality and the Dominated Convergence Theorem.

MIT OpenCourseWare http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.