
NON LINEAR PROGRAMMING 
Prof. Stephen Graves 

 
 In a linear program, the constraints are linear in the decision variables, and so is 
the objective function.  In a non linear program, the constraints and/or the objective 
function can also be non linear function of the decision variables. 
 
Example: Gasoline Blending:  The qualities of a blend are determined by the 
qualities of the stocks used in the blend.  An optimization is to determine the volume of 
each input stock in each blend so that the objective function is optimized subject to the 
output blends satisfying their quality specifications, stock availability constraints, and 
blend demand constraints. 
 
The decision variables are xij denoting the amount of stock i in blend j.  

 
For the most part the constraints can be written as linear functions; but some of the 
quality constraints are non linear: 
 
Distillation Blending: 
 

Djk = bk + ck * ln [ Σi  ( Sik * VFij)  ]  

 
where  
 
 
 Djk is the k th distillation point for blend j. 

 
 Sik  is the k th distillation point for stock i. 

 

VFij is the volume fraction of stock i in blend j and is equal to xij/ (Σi  xij)  

 
and  bk and   ck are constants. 

15.066J  Summer 2003 82



 
Octane Blending: 
 

OCTjk = ak{  Σi  ( bi  * bi * VFij) -   Σi  (c i * VFij)2 }  

 

  +  dk{  Σi  ( ei * VFij)  -   Σi  (f i * VFij)2 }2 

 

  +  gk  Σi  { ( hi * VFij) -    ( ji  * ki * VFij * VFij)} 

 
where OCTjk are the various octane indices for blend j. 

 
For both Djk and OCTjk the optimization problem would have simple upper bounds and 

lower bounds for each blend and for each quality index. 
 
Thus the constraints for the formulation would include: 
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nds and lower bounds on the distillation points and octane levels for each blend
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Example: Site Location; given customer locations (xi, yi), find the location (X, Y) 

that minimizes the weighted distances from the customer to the central warehouse (or 
minimizes the maximum distance to an emergency vehicle location). 
 The distance from customer i to the warehouse is di and is typically a non-linear 
function of the decision variables (xi, yi), and  (X, Y). To wit, we might have 
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We then have an objective:
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∑  subject to constraints on the decision variables. 

 
Example:   Determine the production quantities for each family of car (luxury, 
intermediate, mid size, compact, subcompact) that maximizes net revenue subject to 
production capacity constraints, fleet fuel mileage constraints. (Haas, SM thesis, 1977) 
 
Decision variables are qi and pi, which denote the quantity and price for each car family. 
 
We then need to assume a relationship between price and quantity, e.g., linear supply-
demand function:   where ai i iq a b p= − i

)

i and bi are positive constants. 

 
The objective of the model is non-linear, to maximize profits: 

( ) ( i i i i i i
i i

Max q p C q p C× − = × −∑ ∑   where Ci equals the cost per unit for car from 

family i. We would have linear capacity constraints: 
 
for each resource type j:   where  is the amount of available respource of type j,

and  is the per unit consumption of resource j to produce a unit of car i.
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We also have a non-linear fleet fuel mileage constraint; the fleet fuel mileage is 
computed as the harmonic average, and needs to exceed some target, say 30 mpg: 
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  where mpgi is the miles per gallon for car 

family i. 

15.066J  Summer 2003 84



Example:  Flow in Pipes  - In designing a network of pipes, say, for a chemical 
processing facility, you might be given the network topology (nodes and edges), the 
desired flow inputs at supply points, desired flow outputs at consumption points, and 
inlet pressures at supply points.  The decision variables are the size of pipes (diameter) 
needed to connect the nodes of the network. 
 The problem is to determine for each edge of the network, the diameter of the 
pipe and the flow rate on that edge. We define the variables: 
 
qj is the flow rate on edge j,   
dpj is the pressure drop across edge j, and  
dj is the diameter of edge j.      

 
There are flow balance constraints at each node of the network (i.e., flow into the node = 
flow out of the node), and constraints on the external flow inputs and outputs. 
 For each edge, the flow rate is a non-linear function of the diameter of the pipe 
and the drop in pressure across the edge, e.g., : 
 
 qj

2 = c  dpj  dj
5 

 
where c is a constant, and the drop in pressure across an edge equals the difference in the 
node potentials.  The objective would be to minimize the cost of the pipes, which 
depends on the diameters chosen. 
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Example: Robot Motion Planning (taken from LFM thesis, Evaluation of a New Robotic 
Assembly Workcell Using Statistical Experimental Techniques and Scheduling 
Procedures by Erol Erturk, 1991) 
 
 
The problem is to determine the velocity and acceleration for a new robot assembly 
system for a given displacement of length d. The objective is to minimize time, subject to 
a constraint on placement accuracy. We assume the robot accelerates at a constant rate of 
acceleration until it reaches its peak velocity, then will travel at its peak velocity, until it 
must decelerate also at a linear rate.  Then the time (in seconds) to travel a distance d is: 
 
Travel time = T = v/a + d/v 
 
where a is the acceleration and deceleration rate (inch/sec2), and v is the peak velocity 
(inch/sec) . 
 
The accuracy (in mils) of the placement depends upon the acceleration rate and the peak 
velocity and has been found empirically to be given by: 
 

0.022   0.0079  -  0.0002A accuracy v a v a= = + ×  
 
The optimization is then to minimize T, subject to a constraint on accuracy A, as well as 
upper bounds on acceleration (a) and velocity (v). 
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Example: Design parameters for coil spring (from Rajan Ramaswamy’s thesis, Computer 
Tools for Preliminary Parametric Design, Ph. D., LFM 1993) The coil spring is used to 
provide a clamping force in an indexing mechanism. Hence, it must deliver a specified 
force while satisfying constraints on compressed length, geometry and material. The 
objective is to find the lightest feasible design, i. e., minimize mass. The following 
equations come from Mark’s handbook for mechanical engineers: 
 
(1)  C = Dspring/Dwire 
C is spring coefficient; Dspring is spring diameter (in); and Dwire is the wire diameter 
(in). 
 
(2)    Kw = (4*C -1)/(4*C- 4) + 0.615/C  
Kw is the Wahl curvature correction factor. 
 
(3)  Kspring = (Dwire4 * G)/(8 * Dspring3 * Ncoils) 
Kspring is the spring stiffness (lb/in); G is torsional modulus (Mpsi); and Ncoils is the 
number of coils. 
 
(4)  L_Free = (Ncoils * Dwire +Tau_Max * 3.14*Dwire3)/(8 * Dspring * Kw * Kspring) 
L_Free is free length (in); Tau_Max is the peak allowable shear stress (Mpsi). 
 
(5)  F_Act = Kspring * (L_Free  -  L_C)  
F_Act is the force acting (lb); L_C is the compressed length (in). 
 
(6)  Tau = (Kw * 8 * F_Act * Dspring) / (3.14 * Dwire3)  
Tau is the shear stress (Mpsi). 
 
(7) Mass = Rho * Ncoils * 3.14 * 3.14 * Dwire2 * Dspring/4 
Mass is the mass of the spring (oz); and Rho is the density of the spring material (lb/in3). 
 
For this problem, L_C, G, Rho, Tau_Max are given constants. 
We are given a lower bound on F_Act, namely the desired force; an upper bound on Tau, 
namely Tau-Max, a lower bound on L_Free, namely L_C, and upper and lower bounds 
on C, Dspring and Dwire. The number of coils (Ncoils) has to be at least 3. 
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ISSUES WITH NON LINEAR PROGRAMS 
 
 
• Optimal solution may occur at extreme point; may occur on the boundary of 
feasible region; may occur in the interior of feasible region. 
 
 
• Many problems will have both a global optimum and several local optima; it is 
very hard to distinguish between local and global optima. 
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APPROACHES TO NON LINEAR PROGRAMS 
 
 
 
• Approximate non linear functions with linear or piece-wise linear functions, 
possibly by using binary integer variables.  This works well if the non linear functions 
“separate” by decision variable. 
 
• Use monotonic or algebraic transformation (e. g., log’s) to make non linear 
functions linear. 
 
• Solve for necessary conditions given by Lagrangean Function (if constraints are 
equalities) or given by Kuhn Tucker conditions (if constraints are inequalities).  This 
works well if there are very few constraints or if the objective is quadratic and all of the 
constraints are linear (a quadratic program). 
 
• Use a search algorithm: 
 

Find a feasible point (vector) to start  X 
 
Find a feasible direction of improvement  D 
 
Move to new point along direction of improvement, step size τ: 
 X  : =   X  +   τ D  
 
Continue until some convergence criterion satisfied. 
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