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Logistic regression extends the ideas of multiple linear regression to the situation

where the dependent variable, y, is binary (for convenience we often code these values as

0 and 1). As with multiple linear regression the independent variables x1, x2 · · ·xk may

be categorical or continuous variables or a mixture of these two types.

Let us take some examples to illustrate [1]:

Example 1: Market Research

The data in Table 1 were obtained in a survey conducted by AT & T in the US

from a national sample of co-operating households. Interest was centered on the adoption

of a new telecommunications service as it related to education, residential stability and

income.

Table 1: Adoption of New Telephone Service

High School or below Some College or above
No Change in Change in No change in Change in
Residence during Residence during Residence during Residence during
Last five years Last five years Last five years Last five years

Low 153/2160 = 0.071 226/1137 = 0.199 61/886 = 0.069 233/1091 = 0.214
Income
High 147/1363 = 0.108 139/ 547 = 0.254 287/1925 = 0.149 382/1415 = 0.270
Income

(For fractions in cells above, the numerator is the number of adopters out of the

number in the denominator).

Note that the overall probability of adoption in the sample is 1628/10524 = 0.155.

However, the adoption probability varies depending on the categorical independent vari-

ables education, residential stability and income. The lowest value is 0.069 for low- income

no-residence-change households with some college education while the highest is 0.270 for
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high-income residence changers with some college education.

The standard multiple linear regression model is inappropriate to model this data for

the following reasons:

1. The model’s predicted probabilities could fall outside the range 0 to 1.

2. The dependent variable is not normally distributed. In fact a binomial model would

be more appropriate. For example, if a cell total is 11 then this variable can take

on only 12 distinct values 0, 1, 2 · · · 11. Think of the response of the households in

a cell being determined by independent flips of a coin with, say, heads representing

adoption with the probability of heads varying between cells.

3. If we consider the normal distribution as an approximation for the binomial model,

the variance of the dependent variable is not constant across all cells: it will be

higher for cells where the probability of adoption, p, is near 0.5 than where it is

near 0 or 1. It will also increase with the total number of households, n, falling in

the cell. The variance equals n(p(1 − p)).

The logistic regression model was developed to account for all these difficulties. It

has become very popular in describing choice behavior in econometrics and in modeling

risk factors in epidemiology. In the context of choice behavior it can be shown to follow

from the random utility theory developed by Manski [2] as an extension of the standard

economic theory of consumer behavior.

In essence the consumer theory states that when faced with a set of choices a consumer

makes a choice which has the highest utility ( a numeric measure of worth with arbitrary

zero and scale). It assumes that the consumer has a preference order on the list of choices

that satisfies reasonable criteria such as transitivity. The preference order can depend on

the individual (e.g. socioeconomic characteristics as in the Example 1 above) as well as
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attributes of the choice. The random utility model considers the utility of a choice to

incorporate a random element. When we model the random element as coming from a

”reasonable” distribution, we can logically derive the logistic model for predicting choice

behavior.

If we let y = 1 represent choosing an option versus y = 0 for not choosing it, the

logistic regression model stipulates:

Probability(Y = 1|x1, x2 · · ·xk) =
exp(βO + β1 ∗ x1 + · · · βk ∗ xk)

1 + exp(βO + β1 ∗ x1 + · · · βk ∗ xk)

where β0, β1, β2 · · ·βk are unknown constants analogous to the multiple linear regression

model.

The independent variables for our model would be:

x1 ≡ ( Education: High School or below = 0, Some College or above = 1

x2 ≡ (Residential Stability: No change over past five years = 0, Change over past five

years = 1

x3 ≡ Income: Low = 0 High = 1

The data in Table 1 is shown below in the format typically required by regression

programs.

x1 x2 x3 # in sample #adopters # Non-adopters Fraction adopters
0 0 0 2160 153 2007 .071
0 0 1 1363 147 1216 .108
0 1 0 1137 226 911 .199
0 1 1 547 139 408 .254
1 0 0 886 61 825 .069
1 1 0 1091 233 858 .214
1 0 1 1925 287 1638 .149
1 1 1 1415 382 1033 .270

10524 1628 8896 1.000

The logistic model for this example is:
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Prob(Y = 1|x1, x2, x3) =
exp(β0 + β1 ∗ xl + β2 ∗ x2 + β3 ∗ x3)

1 + exp(β0 + β1 ∗ xl + β2 ∗ x2 + β3 ∗ x3)
.

We obtain a useful interpretation for the coefficients by noting that:

exp(β0) =
Prob(Y = 1|x1 = x2 = x3 = 0)
Prob(Y = 0|x1 = x2 = x3 = 0)

= Odds of adopting in the base case (x1 = x2 = x3 = 0)

exp(β1) =
Odds of adopting when x1 = 1, x2 = x3 = 0

Odds of adopting in the base case

exp(β2) =
Odds of adopting when x2 = 1, x1 = x3 = 0

Odds of adopting in the base case

exp(β3) =
Odds of adopting when x3 = 1, x1 = x2 = 0

Odds of adopting in the base case

The logistic model is multiplicative in odds in the following sense:

Odds of adopting for a given x1, x2, x3

= exp(β0) ∗ exp(β1x1) ∗ exp(β2x2) ∗ exp(β3x3)

=




Odds
for

basecase


 ∗




Factor
due
to x1


 ∗




Factor
due
to x2


 ∗




Factor
due
to x3




If x1 = 1 the odds of adoption get multiplied by the same factor for any given level of

x2 and x3. Similarly the multiplicative factors for x2 and x3 do not vary with the levels

of the remaining factors. The factor for a variable gives us the impact of the presence of

that factor on the odds of adopting.

If βi = 0, the presence of the corresponding factor has no effect (multiplication by

one). If βi < 0, presence of the factor reduces the odds (and the probability) of adoption,

whereas if βi > 0, presence of the factor increases the probability of adoption.

The computations required to produce these maximum likelihood estimates require

iterations using a computer program. The output of a typical program is shown below:
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95% Conf. Intvl. for odds
Variable Coeff. Std. Error p-Value Odds Lower Limit Upper Limit
Constant -2.500 0.058 0.000 0.082 0.071 0.095
x1 0.161 0.058 0.006 1.175 1.048 1.316
x2 0.992 0.056 0.000 2.698 2.416 3.013
x3 0.444 0.058 0.000 1.560 1.393 1.746

From the estimated values of the coefficients, we see that the estimated probability of

adoption for a household with values x1, x2 and x3 for the independent variables is:

Prob(Y = 1|x1, x2, x3) =
exp(−2.500 + 0.161 ∗ x1 + 0.992 ∗ x2 + 0.444 ∗ x3)

1 + exp(−2.500 + 0.161 ∗ x1 + 0.992 ∗ x2 + 0.444 ∗ x3)
.

The estimated number of adopters from this model will be the total number of households

with values x1, x2 and x3 for the independent variables multiplied by the above probability.

The table below shows the estimated number of adopters for the various combinations

of the independent variables.

x1 x2 x3 # in # adopters Estimated Fraction Estimated
sample (# adopters) Adopters Prob(Y = l|x1, x2, x3)

0 0 0 2160 153 164 0.071 0.076
0 0 1 1363 147 155 0.108 0.113
0 1 0 1137 226 206 0.199 0.181
0 1 1 547 139 140 0.254 0.257
1 0 0 886 61 78 0.069 0.088
1 1 0 1091 233 225 0.214 0.206
1 0 1 1925 287 252 0.149 0.131
1 1 1 1415 382 408 0.270 0.289

In data mining applications we will have validation data that is a hold-out sample not

used in fitting the model.

Let us suppose we have the following validation data consisting of 598 households:
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x1 x2 x3 # in # adopters Estimated Error Absolute
validation in validation (# adopters) (Estimate Value

sample sample -Actal) of Error
0 0 0 29 3 2.200 -0.800 0.800
0 0 1 23 7 2.610 -4.390 4.390
0 1 0 112 25 20.302 -4.698 4.698
0 1 1 143 27 36.705 9.705 9.705
1 0 0 27 2 2.374 0.374 0.374
1 1 0 54 12 11.145 -0.855 0.855
1 0 1 125 13 16.338 3.338 3.338
1 1 1 85 30 24.528 -5.472 5.472

Totals 598 119 116.202

The total error is -2.8 adopters or a percentage error in estimating adopters of -2.8/119

= 2.3%.

The average percentage absolute error is

0.800 + 4.390 + 4.698 + 9.705 + 0.374 + 0.855 + 3.338 + 5.472
119

= .249 = 24.9% adopters.

The confusion matrix for households in the validation data for set is given below:

Observed
Adopters Non-adopters Total

Predicted:
Adopters 103 13 116
Non-adopters 16 466 482
Total 119 479 598

As with multiple linear regression we can build more complex models that reflect

interactions between independent variables by including factors that are calculated from

the interacting factors. For example if we felt that there is an interactive effect b etween

x1 and x2 we would add an interaction term x4 = x1 × x2.
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Example 2: Financial Conditions of Banks [2]

Table 2 gives data on a sample of banks. The second column records the judgment of

an expert on the financial condition of each bank. The last two columns give the values

of two commonly ratios commonly used in financial analysis of banks.

Table 2: Financial Conditions of Banks

Financial Total Loans & Leases/ Total Expenses /
Obs Condition∗ Total Assets Total Assets

(y) (x1) (x2)
1 1 0.64 0.13
2 1 1.04 0.10
3 1 0.66 0.11
4 1 0.80 0.09
5 1 0.69 0.11
6 1 0.74 0.14
7 1 0.63 0.12
8 1 0.75 0.12
9 1 0.56 0.16

10 1 0.65 0.12
11 0 0.55 0.10
12 0 0.46 0.08
13 0 0.72 0.08
14 0 0.43 0.08
15 0 0.52 0.07
16 0 0.54 0.08
17 0 0.30 0.09
18 0 0.67 0.07
19 0 0.51 0.09
20 0 0.79 0.13

∗ Financial Condition = 1 for financially weak banks;

= 0 for financially strong banks.

Let us first consider a simple logistic regression model with just one independent

variable. This is analogous to the simple linear regression model in which we fit a straight

line to relate the dependent variable, y, to a single independent variable, x.

7



Let us construct a simple logistic regression model for classification of banks using

the Total Loans & Leases to Total Assets ratio as the independent variable in our model.

This model would have the following variables:

Dependent variable:

Y = 1, if financially distressed,

= 0, otherwise.

Independent (or Explanatory) variable:

x1 = Total Loans & Leases/Total Assets Ratio

The equation relating the dependent variable with the explanatory variable is:

Prob(Y = 1|x1) =
exp(β0 + β1 ∗ xl)

1 + exp(β0 + β1 ∗ xl)

or, equivalently,

Odds (Y = 1 versus Y = 0) = (β0 + β1 ∗ xl).

The Maximum Likelihood Estimates of the coefficients for the model are: β̂0 = −6.926,

β̂1 = 10.989

So that the fitted model is:

Prob(Y = 1|x1) =
exp(−6.926 + 10.989 ∗ x1)

(1 + exp(−6.926 + 10.989 ∗ x1)
.
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Figure 1 displays the data points and the fitted logistic regression model.
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We can think of the model as a multiplicative model of odds ratios as we did for

Example 1. The odds that a bank with a Loan & Leases/Assets Ratio that is zero will

be in financial distress = exp(−6.926) = 0.001. These are the base case odds. The

odds of distress for a bank with a ratio of 0.6 will increase by a multiplicative factor of

exp(10.989∗0.6) = 730 over the base case, so the odds that such a bank will be in financial

distress = 0.730.

Notice that there is a small difference in interpretation of the multiplicative factors for

this example compared to Example 1. While the interpretation of the sign of βi remains

as before, its magnitude gives the amount by which the odds of Y = 1 against Y = 0

are changed for a unit change in xi. If we construct a simple logistic regression model for

classification of banks using the Total Expenses/ Total Assets ratio as the independent

variable we would have the following variables:

Dependent variable:

Y = 1, if financially distressed,

= 0, otherwise.

Independent (or Explanatory) variables:

x2 = Total Expenses/ Total Assets Ratio

The equation relating the dependent variable with the explanatory variable is:

Prob(Y = l|x1) =
exp(β0 + β2 ∗ x2)

1 + exp(β0 + β2 ∗ x2)

or, equivalently,

Odds (Y = 1 versus Y = 0) = (β0 + β2 ∗ x2).

The Maximum Likelihood Estimates of the coefficients for the model are: β0 = −9.587,

β2 = 94.345
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Figure 2 displays the data points and the fitted logistic regression model.

Computation of Estimates

As illustrated in Examples 1 and 2, estimation of coefficients is usually carried out

based on the principle of maximum likelihood which ensures good asymptotic (large sam-

ple) properties for the estimates. Under very general conditions maximum likelihood

estimators are:

• Consistent : the probability of the estimator differing from the true value approaches

zero with increasing sample size;

• Asymptotically Efficient : the variance is the smallest possible among consistent

estimators

• Asymptotically Normally Distributed: This allows us to compute confidence intervals

and perform statistical tests in a manner analogous to the analysis of linear multiple

regression models, provided the sample size is ’large’.
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Algorithms to compute the coefficient estimates and confidence intervals are iterative

and less robust than algorithms for linear regression. Computed estimates are generally

reliable for well-behaved datasets where the number of observations with depende nt

variable values of both 0 and 1 are ‘large’; their ratio is ‘not too close’ to either zero or

one; and when the number of coefficients in the logistic regression model is small relative

to the sample size (say, no more than 10%). As with linear regression collinearity (strong

correlation amongst the independent variables) can lead to computational difficulties.

Computationally intensive algorithms have been developed recently that circumvent some

of these difficulties [3].
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Appendix A

Computing Maximum Likelihood Estimates and Confidence Intervals

for Regression Coefficients

We denote the coefficients by the p × 1 column vector β with the row element i equal

to βi, The n observed values of the dependent variable will be denoted by the n × 1

column vector y with the row element j equal to yj; and the corresponding values of the

independent variable i by xij for

i = 1 · · · p; j = 1 · · ·n.

Data : yj, x1j, x2j, · · · , xpj, j = 1, 2, · · · , n.

Likelihood Function: The likelihood function, L, is the probability of the observed

data viewed as a function of the parameters (β2i in a logistic regression).

n∏
j=1

eyi(β0+β1x1j+β2x2j ···+βpxpj )
1 + eβ0+β1x1j+β2x2j ···+βixpj)

=
n∏

j=1

eΣiyjβixij

1 + eΣiβixij

=
eΣi(Σjyjxij)βi

n∏
j=1

[1 + eΣiβixij ]

=
eΣiβiti

n∏
j=1

[1 + eΣiβixij ]

where ti = Σjyjxij

These are the sufficient statistics for a logistic regression model analogous to ŷ and S in

linear regression.

Loglikelihood Function: This is the logarithm of the likelihood function,

l = Σiβiti − Σj log[1 + eΣiβixij ].
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We find the maximum likelihood estimates, β̂i, of βi by maximizing the loglikelihood

function for the observed values of yj and xij in our data. Since maximizing the log of

a function is equivalent to maximizing the function, we often work with the loglikeli-

hood because it is generally less cumbersome to use for mathematical operations such as

differentiation.

Since the likelihood function can be shown to be concave, we will find the global max-

imum of the function (if it exists) by equating the partial derivatives of the loglikelihood

to zero and solving the resulting nonlinear equations for β̂i.

∂l

∂βi

= ti − Σj
xije

Σiβixij

[1 + eΣiβixij ]

= ti − Σjxijπ̂j = 0, i = 1, 2, · · · , p

or Σixijπ̂j = ti

where π̂j = eΣibbixij

[1+eΣiβixij ]
= E(Yj)

An intuitive way to understand these equations is to note that

ΣjxijE(Yj) = Σjxijyj

In words, the maximum likelihood estimates are such that the expected value of the

sufficient statistics are equal to their observed values.

Note : If the model includes the constant term xij = 1 for all j then ΣjE(Yj) = Σjyj, i.e.

the expected number of successes (responses of one) using MLE estimates of βi equals the

observed number of successes. The β̂i’s are consistent, asymptotically efficient and follow

a multivariate Normal distribution (subject to mild regularity conditions).

Algorithm : A popular algorithm for computing β̂i uses the Newton-Raphson method

for maximizing twice differentiable functions of several variables (see Appendix B).
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The Newton-Raphson method involves computing the following successive approxima-

tions to find β̂i, the likelihood function

βt+1 = βt + [I(βt)]−1∇I(βt)

where

Iij =
∂2l

∂βi∂jβj

• On convergence, the diagonal elements of I(βt)−1 give squared standard errors (ap-

proximate variance) for β̂i.

• Confidence intervals and hypothesis tests are based on asymptotic normal distribu-

tion of β̂i.

The loglikelihood function is always negative and does not have a maximum when it

can be made arbitrary close to zero. In that case the likelihood function can be made

arbitrarily close to one and the first term of the loglikelihood function given above

approaches infinity. In this situation the predicted probabilities for observations

with yj = 0 can be made arbitrarily close to 0 and those for yj = 1 can be made

arbitrarily close to 1 by choosing suitable very large absolute values of some βi. This

is the situation when we have a perfect model (at least in terms of the training data

set)! This phenomenon is more likely to occur when the number of parameters is a

large fraction (say > 20%) of the number of observations.
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Appendix B

The Newton-Raphson Method

This method finds the values of βi that maximize a twice differentiable concave

function, g(β). If the function is not concave, it finds a local maximum. The

method uses successive quadratic approximations to g based on Taylor series. It

converges rapidly if the starting value, β0, is reasonably close to the maximizing

value, β̂, of β.

The gradient vector ∇ and the Hessian matrix, H, as defined below, are used to

update an estimate βt to βt+1.

∇g(βt) =




...
∂g
∂βi

...



βt

H(βt) =




...
· · · ∂2g

∂βi∂βk
· · ·

...



βt

.

The Taylor series expansion around βt gives us:

g(β) 	 g(βt) + ∇g(βt)(β − βt) + 1/2(β − βt)′H(βt)(β − βt)

Provided H(βt) is positive definite, the maximum of this approximation occurs when

its derivative is zero.

∇g(βt) − H(βt)(β − βt) = 0

or

β = βt − [H(βt)]−1∇g(βt).

This gives us a way to compute βt+1, the next value in our iterations.

βt+1 = βt − [H(βt]−1∇g(βt).

To use this equation H should be non-singular. This is generally not a problem

although sometimes numerical difficulties can arise due to collinearity.
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Near the maximum the rate of convergence is quadratic as it can be shown that

|βt+1
i − β̂i| ≤ c|βt

i − β̂i|2 for some c ≥ 0 when βt
i is near β̂i for all i.
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