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2 Chap. 2 Multiple Linear Regression

Perhaps the most popular mathematical model for making predictions is
the multiple linear regression model. You have already studied multiple re-
gression models in the “Data, Models, and Decisions” course. In this note we
will build on this knowledge to examine the use of multiple linear regression
models in data mining applications. Multiple linear regression is applicable to
numerous data mining situations. Examples are: predicting customer activity
on credit cards from demographics and historical activity patterns, predicting
the time to failure of equipment based on utilization and environment condi-
tions, predicting expenditures on vacation travel based on historical frequent
flier data, predicting staffing requirements at help desks based on historical
data and product and sales information, predicting sales from cross selling of
products from historical information and predicting the impact of discounts on
sales in retail outlets.

In this note, we review the process of multiple linear regression. In this
context we emphasize (a) the need to split the data into two categories: the
training data set and the validation data set to be able to validate the multiple
linear regression model, and (b) the need to relax the assumption that errors
follow a Normal distribution. After this review, we introduce methods for
identifying subsets of the independent variables to improve predictions.

2.1 A Review of Multiple Linear Regression

In this section, we review briefly the multiple regression model that you en-
countered in the DMD course. There is a continuous random variable called the
dependent variable, Y, and a number of independent variables, x1,z2, ..., z).
Our purpose is to predict the value of the dependent variable (also referred to
as the response variable) using a linear function of the independent variables.
The values of the independent variables(also referred to as predictor variables,
regressors or covariates) are known quantities for purposes of prediction, the
model is:

Y = fo+ fizr + faxa + - + Bpxp + €, (2.1)

where €, the “noise” variable, is a Normally distributed random variable with
mean equal to zero and standard deviation ¢ whose value we do not know. We
also do not know the values of the coefficients By, 51, 52, ..., 8y. We estimate
all these (p + 2) unknown values from the available data.

The data consist of n rows of observations also called cases, which give
us values vy;, T;1, Ti2, ..., Tip; © = 1,2,...,n. The estimates for the 3 coefficients
are computed so as to minimize the sum of squares of differences between the
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fitted (predicted) values at the observed values in the data. The sum of squared
differences is given by

n

Z(yi — Bo — Bizi1 — Bomia — . .. — Bprip)?

=1

Let us denote the values of the coefficients that minimize this expression by
Bo, @1, ,32, e Bp. These are our estimates for the unknown values and are called
OLS (ordinary least squares) estimates in the literature. Once we have com-
puted the estimates ,@0, ﬁl, ,32, e ,ﬁp we can calculate an unbiased estimate 62
for o2 using the formula:
1 " -
6= ——— Z(yz — Bo — w1 — Pawio — ... — 5p$1;p)2

n—p-lig

Sum of the residuals

#observations — #coefficients

We plug in the values of BO, Bl, Bg, cees Bp in the linear regression model
(1) to predict the value of the dependent value from known values of the in-
dependent values, x1, x2, ..., x,. The predicted value, Y, is computed from the
equation X R R R K
Y:ﬂ0+ﬂ1$1+ﬁg$2+"'+ﬂpl’p.

Predictions based on this equation are the best predictions possible in the sense
that they will be unbiased (equal to the true values on the average) and will
have the smallest expected squared error compared to any unbiased estimates
if we make the following assumptions:

1. Linearity The expected value of the dependent variable is a linear func-
tion of the independent variables, i.e.,

E(Y|£B1, xo,. .. ,{L‘p) = ﬂo + ﬁlxl + 5211,‘2 4+ ...+ ﬁpl’p.

2. Independence The “noise” random variables €; are independent between
all the rows. Here ¢; is the “noise” random variable in observation i for
1=1,...,n.

3. Unbiasness The noise random variable ¢; has zero mean, i.e., E(g;) =0
fori=1,2,...,n.

4. Homoskedasticity The standard deviation of ¢; equals the same (un-
known) value, o, for i = 1,2,...,n.
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5. Normality The “noise” random variables, ¢;, are Normally distributed.

An important and interesting fact for our purposes is that even if we
drop the assumption of normality (Assumption 5) and allow the noise variables
to follow arbitrary distributions, these estimates are very good for prediction.
We can show that predictions based on these estimates are the best linear
predictions in that they minimize the expected squared error. In other words,
amongst all linear models, as defined by equation (1) above, the model using
the least squares estimates,

/807517527 s 75}7)

will give the smallest value of squared error on the average. We elaborate on
this idea in the next section.

The Normal distribution assumption was required to derive confidence in-
tervals for predictions. In data mining applications we have two distinct sets of
data: the training data set and the validation data set that are both representa-
tive of the relationship between the dependent and mdependent variables. The
training data is used to estimate the regression coefficients Bo, 51, Ba, ..., ﬁp
The validation data set constitutes a “hold-out” sample and is not used in
computing the coefficient estimates. This enables us to estimate the error in
our predictions without having to assume that the noise variables follow the
Normal distribution. We use the training data to fit the model and to estimate
the coefficients. These coefficient estimates are used to make predictions for
each case in the validation data. The prediction for each case is then compared
to value of the dependent variable that was actually observed in the validation
data. The average of the square of this error enables us to compare different
models and to assess the accuracy of the model in making predictions.

2.2 Illustration of the Regression Process

We illustrate the process of Multiple Linear Regression using an example adapted
from Chaterjee, Hadi and Price from on estimating the performance of super-
visors in a large financial organization.

The data shown in Table 2.1 are from a survey of clerical employees in a
sample of departments in a large financial organization. The dependent variable
is a performance measure of effectiveness for supervisors heading departments
in the organization. Both the dependent and the independent variables are
totals of ratings on different aspects of the supervisor’s job on a scale of 1 to
5 by 25 clerks reporting to the supervisor. As a result, the minimum value for
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each variable is 25 and the maximum value is 125. These ratings are answers
to survey questions given to a sample of 25 clerks in each of 30 departments.
The purpose of the analysis was to explore the feasibility of using a question-
naire for predicting effectiveness of departments thus saving the considerable
effort required to directly measure effectiveness. The variables are answers to
questions on the survey and are described below.

e Y Measure of effectiveness of supervisor.
e X1 Handles employee complaints

e X2 Does not allow special privileges.

X3 Opportunity to learn new things.

e X4 Raises based on performance.

X5 Too critical of poor performance.

X6 Rate of advancing to better jobs.

The multiple linear regression estimates as computed by the StatCalc add-
in to Excel are reported in Table 2.2. The equation to predict performance is

Y =13.182 +0.583X1 —0.044X2 + 0.329X3 — 0.057X4 + 0.112X5 — 0.197.X6.

In Table 2.3 we use ten more cases as the validation data. Applying the previous
equation to the validation data gives the predictions and errors shown in Table
2.3. The last column entitled error is simply the difference of the predicted
minus the actual rating. For example for Case 21, the error is equal to 44.46-
50=-5.54

We note that the average error in the predictions is small (-0.52) and so
the predictions are unbiased. Further the errors are roughly Normal so that this
model gives prediction errors that are approximately 95% of the time within
+14.34 (two standard deviations) of the true value.

2.3 Subset Selection in Linear Regression

A frequent problem in data mining is that of using a regression equation to
predict the value of a dependent variable when we have a number of variables
available to choose as independent variables in our model. Given the high speed
of modern algorithms for multiple linear regression calculations, it is tempting
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Case | Y X1 X2 X3 X4 X5 X6
1 43 51 30 39 61 92 45
2 63 64 51 54 63 73 47
3 71 70 68 69 76 86 48
4 61 63 45 47 54 84 35
5 81 78 56 66 71 83 47
6 43 55 49 44 54 49 34
7 58 67 42 56 66 68 35
8 71 75 50 55 70 66 41
9 72 8 72 67 71 83 31

10 |67 61 45 47 62 80 41
11 |64 53 53 58 58 67 34
12 |67 60 47 39 59 74 41
13 |69 62 57 42 55 63 25
14 |68 83 8 45 59 77 35
15 |77 77 54 72 79 U7 46
16 |8 90 50 72 60 54 36
17 |74 8 64 69 79 79 63
18 |65 60 65 75 55 80 60
19 |65 70 46 57 75 85 46
20 |50 58 68 54 64 T8 52

Table 2.1: Training Data (20 departments).

in such a situation to take a kitchen-sink approach: why bother to select a
subset, just use all the variables in the model. There are several reasons why
this could be undesirable.

e [t may be expensive to collect the full complement of variables for future
predictions.

e We may be able to more accurately measure fewer variables (for example
in surveys).

e Parsimony is an important property of good models. We obtain more
insight into the influence of regressors in models with a few parameters.
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Subset Selection in Linear Regression

Constant
X1
X2
X3
X4
X5
X6

Multiple R-squared
Residual SS
Std. Dev.

Estimate

Coefficient
13.
.583
.044
.329
.057
.112
.197

182

0.
738.900
7.

O O O O O O

656

539

StdError
16.
.232
.167
.219
.317
.196
.247

746

t-statistic

.787
.513
.263
.501
.180
.570
.798

p-value

O O O O O O

.445
.026
LT97
.157
.860
.578
.439

e Estimates of regression coefficients are likely to be unstable due to multi-
collinearity in models with many variables. We get better insights into the
influence of regressors from models with fewer variables as the coeflicients
are more stable for parsimonious models.

e It can be shown that using independent variables that are uncorrelated
with the dependent variable will increase the variance of predictions.

e It can be shown that dropping independent variables that have small

Table 2.2: Output of StatCalc.

(non-zero) coefficients can reduce the average error of predictions.

Let us illustrate the last two points using the simple case of two indepen-
dent variables. The reasoning remains valid in the general situation of more

than two independent variables.

2.3.1 Dropping Irrelevant Variables

Suppose that the true equation for Y, the dependent variable, is:

Y =p5/X1+e
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Case Y X1 X2 X3 X4 X5 X6 | Prediction | Error

21 50 40 33 34 43 64 33 44.46 -5.54
22 64 61 52 62 66 80 41 63.98 -0.02
23 53 66 52 50 63 80 37 63.91 10.91
24 40 37 42 58 50 57 49 45.87 5.87
25 63 54 42 48 66 75 33 56.75 -6.25

26 66 77 66 63 88 76 72 65.22 -0.78
27 78 75 58 74 80 78 49 73.23 -4.77
28 48 57 44 45 51 83 38 58.19 10.19
29 8 & 71 71 77 74 55 76.05 -8.95
30 82 82 39 59 64 78 39 76.10 -5.90
Averages: 62.38 -0.52
Std Devs: 11.30 7.17

Table 2.3: Predictions on the validation data.

and suppose that we estimate Y (using an additional variable X5 that is actually
irrelevant) with the equation:

Y =51 X1+ B Xo + e (23)

We use data y;, z;1,xi2, 1 = 1,2...,n. We can show that in this situation
the least squares estimates (1 and (o will have the following expected values
and variances:

~ A~ 0—2

E(ﬂl) = b, V(I’I”(ﬁl) = (1 _ R%2) Zn—l x21

o2

(1= R X 2
where Rio is the correlation coefficient between X7 and Xos.
We notice that (1 is an unbiased estimator of 31 and (2 is an unbiased

estimator of (s, since it has an expected value of zero. If we use Model (2) we
obtain that

E(By) =0, Var(3) =

0.2

E(f) = B, Var(h) = =—-

i=1 L1

Note that in this case the variance of Bl is lower.
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The variance is the expected value of the squared error for an unbiased
estimator. So we are worse off using the irrelevant estimator in making predic-
tions. Even if X happens to be uncorrelated with X; so that R?, = 0 and the
variance of Bl is the same in both models, we can show that the variance of a
prediction based on Model (3) will be worse than a prediction based on Model
(2) due to the added variability introduced by estimation of .

Although our analysis has been based on one useful independent variable
and one irrelevant independent variable, the result holds true in general. It is
always better to make predictions with models that do not include
irrelevant variables.

2.3.2 Dropping independent variables with small coefficient val-
ues

Suppose that the situation is the reverse of what we have discussed above,
namely that Model (3) is the correct equation, but we use Model (2) for our
estimates and predictions ignoring variable X5 in our model. To keep our results
simple let us suppose that we have scaled the values of X7, Xo, and Y so that
their variances are equal to 1. In this case the least squares estimate Bl has the
following expected value and variance:

E(B1) = B1 + Riafs, Var(p) =

Notice that Blis a biased estimator of §; with bias equal to R1202 and its
Mean Square Error is given by:
MSE(B) = E[(B - 5)?
= E[{A - EB) + E(B1) — 1}
= [Bias(B))* + Var(B)
= (R12f2)* + 0%

If we use Model (3) the least squares estimates have the following expected
values and variances:

~ ~ 0'2
E(ﬁl) = [, Va?“(ﬁl) = m,

~ ~ 0'2
PR = Varl) = )

Now let us compare the Mean Square Errors for predicting Y at X; =
ui, XQ = Uu.
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For Model (2), the Mean Square Error is:

MSE2(Y) = E[(Y -Y)?
= El(uifi —uip —¢)?
= u}MSE2(61) +o?

= uj(Ri2f)? + uio® + o?
For Model (2), the Mean Square Error is:

MSE3(Y) = E[(Y -Y)?
= E[(u1f1 +u2fe — u1f1 — uzfe — €)?
= Var(ulﬁAl + UQBQ) + 02, because now Y isunbiased
= WVar(B1) +udVar(Bs) + 2uiusCovar(fy, fa)
(u? 4+ u3 — 2ujuaR12) o

= 0" +o

2
(1 - Ri,) '

Model (2) can lead to lower mean squared error for many combinations
of values for uy,us, Ri2, and (B2/0)%. For example, if u; = 1, ug = 0, then
MSE2(Y) < MSE3(Y), when

o2

fha2) (-7

i.e., when

|32 1

— <7\/@.

If @ < 1, this will be true for all values of R,; if, however, say R3, > .9,
then this will be true for |3]/o < 2.

In general, accepting some bias can reduce MSE. This Bias-Variance trade-
off generalizes to models with several independent variables and is particularly
important for large values of the number p of independent variables, since in
that case it is very likely that there are variables in the model that have small
coefficients relative to the standard deviation of the noise term and also exhibit
at least moderate correlation with other variables. Dropping such variables will
improve the predictions as it will reduce the MSE.

This type of Bias-Variance trade-off is a basic aspect of most data mining
procedures for prediction and classification.
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2.3.3 Algorithms for Subset Selection

Selecting subsets to improve MSE is a difficult computational problem for large
number p of independent variables. The most common procedure for p greater
than about 20 is to use heuristics to select “good” subsets rather than to look for
the best subset for a given criterion. The heuristics most often used and avail-
able in statistics software are step-wise procedures. There are three common
procedures: forward selection, backward elimination and step-wise regression.

Forward Selection

Here we keep adding variables one at a time to construct what we hope is a
reasonably good subset. The steps are as follows:

1. Start with constant term only in subset S.

2. Compute the reduction in the sum of squares of the residuals (SSR) ob-
tained by including each variable that is not presently in S. We denote
by SSR(S) the sum of square residuals given that the model consists of
the set S of variables. Let 62(S) be an unbiased estimate for o for the
model consisting of the set S of variables. For the variable, say, i, that
gives the largest reduction in SSR compute

SSR(S) — SSR(S U {i})

f = Maties ™S5 Uy

If F; > F;,, where Fj, is a threshold (typically between 2 and 4) add i to
S

3. Repeat 2 until no variables can be added.

Backward Elimination

1. Start with all variables in S.

2. Compute the increase in the sum of squares of the residuals (SSR) ob-
tained by excluding each variable that is presently in S. For the variable,

say, i, that gives the smallest increase in SSR compute
= Min.. . SSRS—{i})-SSR(S)
o = Migs 5%(S)
If F; < Fuut, where F,y; is a threshold (typically between 2 and 4) then

drop ¢ from S.

3. Repeat 2 until no variable can be dropped.
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Backward Elimination has the advantage that all variables are included in
S at some stage. This addresses a problem of forward selection that will never
select a variable that is better than a previously selected variable that is strongly
correlated with it. The disadvantage is that the full model with all variables is
required at the start and this can be time-consuming and numerically unstable.

Step-wise Regression

This procedure is like Forward Selection except that at each step we consider
dropping variables as in Backward Elimination.

Convergence is guaranteed if the thresholds F,,; and Fj, satisfy: F,,; <
F;,. It is possible, however, for a variable to enter S and then leave S at a
subsequent step and even rejoin S at a yet later step.

As stated above these methods pick one best subset. There are straight-
forward variations of the methods that do identify several close to best choices
for different sizes of independent variable subsets.

None of the above methods guarantees that they yield the best subset
for any criterion such as adjusted R?. (Defined later in this note.) They are
reasonable methods for situations with large numbers of independent variables
but for moderate numbers of independent variables the method discussed next
is preferable.

All Subsets Regression

The idea here is to evaluate all subsets. Efficient implementations use branch
and bound algorithms of the type you have seen in DMD for integer program-
ming to avoid explicitly enumerating all subsets. (In fact the subset selection
problem can be set up as a quadratic integer program.) We compute a criterion
such as Rgdj, the adjusted R? for all subsets to choose the best one. (This is
only feasible if p is less than about 20).

2.3.4 Identifying subsets of variables to improve predictions

The All Subsets Regression (as well as modifications of the heuristic algorithms)
will produce a number of subsets. Since the number of subsets for even moderate
values of p is very large, we need some way to examine the most promising
subsets and to select from them. An intuitive metric to compare subsets is R>.
However since R? = 1 — % where SST , the Total Sum of Squares, is the
Sum of Squared Residuals for the model with just the constant term, if we use
it as a criterion we will always pick the full model with all p variables. One

approach is therefore to select the subset with the largest R? for each possible
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size k, k = 2,...,p+ 1. The size is the number of coefficients in the model and
is therefore one more than the number of variables in the subset to account
for the constant term. We then examine the increase in R? as a function of k
amongst these subsets and choose a subset such that subsets that are larger in
size give only insignificant increases in R2.

Another, more automatic, approach is to choose the subset that maxi-
mizes, R?Ldj, a modification of R? that makes an adjustment to account for size.
The formula, for Rg dj 18
9 n—1

1- ——(1-RY.

Fagj = n—k—1

It can be shown that using Ridj to choose a subset is equivalent to picking
the subset that minimizes 2.

Table 2.4 gives the results of the subset selection procedures applied to
the training data in the Example on supervisor data in Section 2.2.

Notice that the step-wise method fails to find the best subset for sizes of 4,
5, and 6 variables. The Forward and Backward methods do find the best subsets
of all sizes and so give identical results as the All subsets algorithm. The best
subset of size 3 consisting of {X1, X3} maximizes Rgdj for all the algorithms.
This suggests that we may be better off in terms of MSE of predictions if we
use this subset rather than the full model of size 7 with all six variables in the
model. Using this model on the validation data gives a slightly higher standard
deviation of error (7.3) than the full model (7.1) but this may be a small price to
pay if the cost of the survey can be reduced substantially by having 2 questions
instead of 6. This example also underscores the fact that we are basing our
analysis on small (tiny by data mining standards!) training and validation data
sets. Small data sets make our estimates of R? unreliable.

A criterion that is often used for subset selection is known as Mallow’s
C). This criterion assumes that the full model is unbiased although it may have
variables that, if dropped, would improve the MSE. With this assumption
we can show that if a subset model is unbiased E(C)) equals k, the size of the
subset. Thus a reasonable approach to identifying subset models with small bias
is to examine those with values of C, that are near k. C, is also an estimate
of the sum of MSE (standardized by dividing by o2) for predictions (the fitted
values) at the x-values observed in the training set. Thus good models are those
that have values of Cp, near k and that have small k (i.e. are of small size). C),
is computed from the formula:
Cp = gf d

Full

+ 2k — n,
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SST= 2149.000

Fin=

3.840

Fout= 2.710

Forward, backward, and all subsets selections

Models
Size SSR RSq RSq Cp 1 2 3 45 6 7
(adj)
2 874.467 0.593 0.570 -0.615 Constant X1
3 786.601 0.634 0.591 -0.161 Constant X1 X3
4 759.413 0.647 0.580 1.361  Constant X1 X3 X6
5 743.617 0.654 0.562 3.083 Constant X1 X3 X5 X6
6 740.746 0.655 0.532 5.032 Constant X1 X2 X3 X5 X6
7 738.900 0.656 0.497 7.000 Constant X1 X2 X3 X4 X5 X6
Stepwise Selection
Models
Size SSR RSq RSq Cp 1 2 3 45 6 7
(adj)
2 874.467 0.593 0.570 -0.615 Constant X1
3 786.601 0.634 0.591 -0.161 Constant X1 X3
4 783.970 0.635 0.567 1.793  Constant X1 X2 X3
5 781.089 0.637 0.540 3.742  Constant X1 X2 X3 X4
6 775.094 0.639 0.511 5.637 Constant X1 X2 X3 X4 X5
7 738.900 0.656 0.497 7.000 Constant X1 X2 X3 X4 X5 X6

Table 2.4: Subset Selection for the example in Section 2.2

where &%u” is the estimated value of o2 in the full model that includes all the
variables. It is important to remember that the usefulness of this approach
depends heavily on the reliability of the estimate of o2 for the full model. This
requires that the training set contains a large number of observations relative to
the number of variables. We note that for our example only the subsets of size
6 and 7 seem to be unbiased as for the other models C), differs substantially

from k. This is a consequence of having too few observations to estimate o
accurately in the full model.
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