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1 k-Nearest Neighbor Classification 

The idea behind the k-Nearest Neighbor algorithm is to build a classification 
method using no assumptions about the form of the function, y = f (x1, x2, ...xp) 
that relates the dependent (or response) variable, y, to the independent (or 
predictor) variables x1, x2, ...xp. The only assumption we make is that it is a 
”smooth” function. This is a non-parametric method because it does not involve 
estimation of parameters in an assumed function form such as the linear form 
that we encountered in linear regression. 

We have training data in which each observation has a y value which is 
just the class to which the observation belongs. For example, if we have two 
classes y is a binary variable. The idea in k-Nearest Neighbor methods is to 
dynamically identify k observations in the training data set that are similar to 
a new observation , say (u1, u2, ...up), that we wish to classify and to use these 
observations to classify the observation into a class, v.If we knew the function f , 
we would simply compute v = f (u1, u2, ...up). If all we are prepared to assume 
is that f is a smooth function, a reasonable idea is to look for observations in 
our training data that are near it (in terms of the independent variables) and 
then to compute v from the values of y for these observations. This is similar 
in spirit to the interpolation in a table of values that we are accustomed to 
doing in using a table of the Normal distribution. When we talk about neigh­
bors we are implying that there is a distance or dissimilarity measure that we 
can compute between observations based on the independent variables. For the 
moment we will confine ourselves to the most popular measure of distance: Eu­
clidean distance.�The Euclidean distance between the points (x1, x2, ...xp) and 
(u1, u2, ...up) is (x1 − u1)2 + (x2 − u2)2 + · · · + (xp − up)2. We will examine 
other ways to define distance between points in the space of predictor variables 
when we discuss clustering methods. 

The simplest case is k = 1 where we find the observation that is closest (the 
nearest neighbor) and set v = y where y is the class of the nearest neighbor. 
It is a remarkable fact that this simple, intuitive idea of using a single nearest 
neighbor to classify observations can be very powerful when we have a large 
number of observations in our training set. It is possible to prove that the 
misclassification error of the 1-NN scheme has a misclassification probability 
that is no worse than twice that of the situation where we know the precise 
probability density functions for each class. In other words if we have a large 
amount of data and used an arbitrarily sophisticated classification rule, we would 
be able to reduce the misclassification error at best to half that of the simple 
1-NN rule. 

For k-NN we extend the idea of 1-NN as follows. Find the nearest k neigh­
bors and then use a majority decision rule to classify a new observation.The 
advantage is that higher values of k provide smoothing that reduces the risk 
of overfitting due to noise in the training data. In typical applications k is in 
units or tens rather than in hundreds or thousands. Notice that if k = n, the 
number of observations in the training data set, we are merely predicting the 
class that has the majority in the training data for all observations irrespective 
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of the values of (u1, u2, ...up). This is clearly a case of oversmoothing unless 
there is no information at all in the independent variables about the dependent 
variable. 

Example 1 
A riding-mower manufacturer would like to find a way of classifying families 

in a city into those that are likely to purchase a riding mower and those who are 
not likely to buy one. A pilot random sample of 12 owners and 12 non-owners 
in the city is undertaken. The data are shown in Table I and 

Figure 1 below: 
Table 1 

Observation	 Income ($000’s) 
60 
85.5 
64.8 
61.5 
87 
110.1 
108 
82.8 
69 
93 
51 
81 
75 
52.8 
64.8 
43.2 
84 
49.2 
59.4 
66 
47.4 
33 
51 
63 
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How do we choose k? In data mining we use the training data to classify the 
cases in the validation data to compute error rates for various choices of k. For 
our example we have randomly divided the data into a training set with 18 cases 
and a validation set of 6 cases. Of course, in a real data mining situation we 
would have sets of much larger sizes. The validation set consists of observations 
6, 7, 12, 14, 19, 20 of Table 1. The remaining 18 observations constitute the 
training data. Figure 1 displays the observations in both training and validation 
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data sets. Notice that if we choose k=1 we will classify in a way that is very 
sensitive to the local characteristics of our data. On the other hand if we choose 
a large value of k we average over a large number of data points and average 
out the variability due to the noise associated with individual data points. If 
we choose k=18 we would simply predict the most frequent class in the data 
set in all cases. This is a very stable prediction but it completely ignores the 
information in the independent variables. 

Table 2 shows the misclassification error rate for observations in the valida­
tion data for different choices of k. 

Table 2 

k 1 3 5 7 9 11 13 18 
Misclassification Error % 33 33 33 33 33 17 17 50 

We would choose k=11 (or possibly 13) in this case. This choice optimally 
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trades off the variability associated with a low value of k against the oversmooth­
ing associated with a high value of k. It is worth remarking that a useful way 
to think of k is through the concept of ”effective number of parameters”. The 
effective number of parameters corresponding to k is n/k where n is the number 
of observations in the training data set. Thus a choice of k=11 has an effec­
tive number of parameters of about 2 and is roughly similar in the extent of 
smoothing to a linear regression fit with two coefficients. 

2 k-Nearest Neighbor Prediction 

The idea of k-NN can be readily extended to predicting a continuous value 
(as is our aim with multiple linear regression models), by simply predicting 
the average value of the dependent variable for the k nearest neighbors. Often 
this average is a weighted average with the weight decreasing with increasing 
distance from the point at which the prediction is required. 

3 Shortcomings of k-NN algorithms 

There are two difficulties with the practical exploitation of the power of the 
k-NN approach. First, while there is no time required to estimate parameters 
from the training data (as would be the case for parametric models such as 
regression) the time to find the nearest neighbors in a large training set can 
be prohibitive. A number of ideas have been implemented to overcome this 
difficulty. The main ideas are: 

1.	 Reduce the time taken to compute distances by working in a reduced 
dimension using dimension reduction techniques such as principal compo­
nents; 

2.	 Use sophisticated data structures such as search trees to speed up identifi­
cation of the nearest neighbor. This approach often settles for an ”almost 
nearest” neighbor to improve speed. 

3.	 Edit the training data to remove redundant or ”almost redundant” points 
in the training set to speed up the search for the nearest neighbor. an 
example is to remove observations in the training data set that have no 
effect on the classification because they are surrounded by observations 
that all belong to the same class. 

Second, the number of observations required in the training data set to 
qualify as large increases exponentially with the number of dimensions p. This 
is because the expected distance to the nearest neighbor goes up dramatically 
with p unless the size of the training data set increases exponentially with p. 
An illustration of this phenomenon, known as ”the curse of dimensionality”, is 
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the fact that if the independent variables in the training data are distributed 
uniformly in a hypercube of dimension p, the probability that a point is within 
a distance of 0.5 units from the center is 

πp/2 

2p−1pΓ(p/2) 

The table below is designed to show how rapidly this drops to near zero for 
different combinations of p and n, the size of the training data set. 

p 
n 2 3 4 5 10 20 30 

10,000 7854 5236 3084 1645 25 0.0002 2×10−10 3×10−17 

100,000 78540 52360 30843 16449 249 0.0025 2×10−9 3×10−16 

1,000,000 785398 523600 308425 164493 2490 0.0246 2×10−8 3×10−15 

10,000,000 7853982 523600 3084251 1644934 24904 0.2461 2×10−7 3×10−14 

The curse of dimensionality is a fundamental issue pertinent to all classifica­
tion, prediction and clustering techniques. This is why we often seek to reduce 
the dimensionality of the space of predictor variables through methods such as 
selecting subsets of the predictor variables for our model or by combining them 
using methods such as principal components, singular value decomposition and 
factor analysis. In the artificial intelligence literature dimension reduction is 
often referred to as factor selection. 
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