Dimensionality Reduction: Principal Components Analysis

In data mining one often encounters situations where there are a large number of variables in
the database. In such situations it is very likely that subsets of variables are highly correlated
with each other. The accuracy and reliability of a classification or prediction model will suffer
if we include highly correlated variables or variables that are unrelated to the outcome of
interest because of over fitting. In model deployment also superfluous variables can increase
costs due to collection and processing of these variables. The dimensionality of a model is the
number of independent or input variables used by the model. One of the key steps in data
mining is therefore finding ways to reduce dimensionality without sacrificing accuracy.

A useful procedure for this purpose is to analyze the principal components of the input
variables. It is especially valuable when we have subsets of measurements that are
measured on the same scale and are highly correlated. In that case it provides a few (often
less than three) variables that are weighted combinations of the original variables that
retain the explanatory power of the full original set.

Example 1: Head Measurements of First Adult Sons
The data below give 25 pairs of head measurements for first adult sons in a sample [1].

First Adult Son
Head Length Head Breadth
(x1) (x1)
191 155
195 149
181 148
183 153
176 144
208 157
189 150
197 159
188 152
192 150
179 158
183 147
174 150
190 159
188 151
163 137
195 155
186 153
181 145
175 140
192 154
174 143
176 139
197 167

190 163



For this data the means of the variables x1 and x2 are 185.7 and 151.1 and the covariance
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. 52.87 54.36
matrix, S =

Figure 1 below shows the scatter plot of points (x1, x2). The principal component

directions are shown by the axes z1 and z2 that are centered at the means of x1 and x2.

The line z1 is the direction of the first principal component of the data. It is the line that
captures the most variation in the data if we decide to reduce the dimensionality of the

data from two to one. Amongst all possible lines it is the line that if we project the points

in the data set orthogonally to get a set of 25 (one dimensional) values using the z1 coordinate,
the variance of the z1 values will be maximum. It is also the line that minimizes

the sum of squared perpendicular distances from the line. (Show why this follows from
Pythagoras’ theorem. How is this line different from the regression line of x2 on x1?)

The z2 axis is perpendicular to the z1 axis.

The directions of the axes are given by the eigenvectors of S. For our example the
eigenvalues are 131.52 and 18.14. The eigenvector corresponding to the larger eigenvalue
i (0.825,0.565) and gives us the direction of the z1 axis. The eigenvector corresponding
to the smaller eigenvalue is (- 0.565, 0.825) and this is the direction of the z2 axis.

The lengths of the major and minor axes of the ellipse that would enclose about 40% of
the points if the points had a bivariate normal distribution are the square roots of the
eigenvalues. This corresponds to rule for being within one standard deviation of the mean
for the (univariate) normal distribution. Similarly in that case doubling the axes lengths of
the ellipse will enclose 86% of the points and tripling it would enclose 99% of the points.
For our example the length of the major axis is V131.5 = 11.47 and V18.14 = 4.26. In
Figure 1 the inner ellipse has these axes lengths while the outer ellipse has axes with
twice these lengths.
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Figure 1

The values of z1 and z2 for the observations are known as the principal component scores
and are shown below. The scores are computed as the inner products of the data points
and the first and second eigenvectors (in order of decreasing eigenvalue).

The means of zI1 and z2 are zero. This follows from our choice of the origin for the (z1,
z2) coordinate system to be the means of x1 and x2. The variances are more interesting.
The variances of z1 and z2 are 131.5 and 18.14 respectively. The first principal
component, z1, accounts for 88% of the total variance. Since it captures most of the
variability in the data, it seems reasonable to use one variable, the first principal score, to
represent the two variables in the original data.

Example 2: Characteristics of Wine
The data in Table 2 gives measurements on 13 characteristics of 60 different wines from

a region. Let us see how principal component analysis would enable us to reduce the
number of dimensions in the data.



Table 2

Alco

14.23

132
13,16
14.37
13.24

142
14.39
14.06
14.83
13.86

141
14.12
1375
14.78
14.38
1363

143
1383
14.18
12.37
12,33
1264
1367
12.37
1217
12.37
1311
12.37
13.34
12.21
12.20
13.86
13,40
12.00
11.96
11.66
13.03
11.84
12,32
1286
1288
12.81

127
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1.71
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216
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1251 124 2235 175 85 2 058 06 125 545 075 151 650
126 246 22 185 94 162 066 063 09 7.1 073 158 695
1225 472 254 21 89 138 047 053 08 385 075 127 720
1253 551 264 25 96 179 06 063 11 5 082 169 515
1249 358 218 185 88 1.62 048 058 085 57 081 182 580
1284 2096 261 2 101 232 06 053 081 4892 089 215 =40
1283 281 27 21 96 154 05 053 075 46 077 231 600
1236 256 235 20 89 14 05 037 0 56 07 247 780
1252 317 272 235 97 155 052 05 055 435 080 206 520
1262 495 235 20 92 2 08 047 102 44 081 205 550
1225 388 22 185 112 138 078 020 114 821 065 2 255
1216 357 215 21 102 15 055 043 1.3 4 06 168 830
1288 504 223 20 80 088 03 04 065 49 058 133 415
1287 461 248 215 86 1.7 065 047 08 765 05 186 625
1232 324 238 215 92 183 076 045 1325 842 055 162 650
1208 38 236 215 113 141 138 03 1.14 94 057 133 580

The output from running a principal components analysis on this data is shown in
Outputl below. The rows of Outputl are in the same order as the columns of Table 1 so
that for example row 1 for each principal component gives the weight for alchohol and
row 13 gives the weight for proline.

Principal Componants
1 2 ) 4 5 i 7 i3 ] 10 11 12

0247 0342 -0245 0166 0044 D624 0122 0294 0400 0037 D084 0041 0.0
0285 0402 0020 0065 0144 0182 0508 0152 0087 -0522 0222 0037 0.0
0045 0488 0417 0201 -0185 0014 0099 0064 0438 0118 0128 0454 01
01870 0213 0588 056 0392 014 0447 0100 0279 0407 Q070 0493 0.1
0128 0023 0485 -0620 -0440 0102 0022 0002 0301 -0183 0122 0127 0.0
0376 0053 00ds 0241 0022 0258 0034 0270 0135 00581 0745 0048 0.2
0400 0044 0003 0081 0085 0477 0025 0191 -0117 -0147 01100 0142 0.8
0243 0468 0112 0402 -0680 0207 0182 0085 0363 0106 Q0BG 0108 0.2
0349 0044 0043 0184 0040 0263 0EE0 0374 0053 03684 0184 0068 01
0076 0477 033 0242 0122 0520 0288 0002 0197 -028 0250 003 01
0205 0306 0472 0335 -0181 0037 0011 0240 0052 -0638 022 0225 0.2
034 OMs 0111 0133 0128 0158 0150 0647 0304 0009 0438 0200 0.0
0323 021 -0111  -057  -0250 0200 0090 0264 -0415 0125 0102 0631 0.0
5444 2327 1370 0872 0808 0491 0427 0257 0249 0226 0185 0166 0.0

41 87E% 17.000% 10.540% 7477% B6218% 3775% 3.287% 2.207% 1.047% 1742% 1420% 1.281% 0361

41 87E% 50 776% TO316% 77.703% 84.0119% 87.785% 01.072% 93 .270% 05 106% 06 .030% 08 358% 00.630% 100.00(

Notice that the first five components account for more than 80% of the total variation
associated with all 13 of the original variables. This suggests that we can capture most of
the variability in the data with less than half the number of original dimensions in the
data. A further advantage of the principal components compared to the original data is
that it they are uncorrelated (correlation coefficient = 0). If we construct regression
models using these principal components as independent variables we will not encounter
problems of multicollinearity.

The principal components shown in Output 1 were computed after after replacing each
original variable by a standardized version of the variable that has unit variance. This is
easily accomplished by dividing each variable by its standard deviation. The effect of this
standardization is to give all variables equal importance in terms of the variability. The
question of when to standardize has to be answered using information of the nature of the
data. When the units of measurement are common for the variables as for example dollars



it would generally be desirable not to rescale the data for unit variance. If the variables
are measured in quite differing units so that it is unclear how to compare the variability of
different variables, it is advisable to scale for unit variance, so that changes in units of
measurement do not change the principal component weights. In the rare situations where
we can give relative weights to variables we would multiply the unit scaled variables by
these weights before doing the principal components analysis.

Example2 (continued)

Rescaling variables in the wine data is a important due to the heterogenous nature of the
variables. The first five principal components computed on ther raw unscaled data are
shown in Table 3. Notice that the variable Proline is the first principal component and it
explains almost all the variance in the data. This is because its standard deviation is 351
compared to the next largest standard deviation of 15 for the variable Magnesium. The
second principal component is Magnesium. The standard deviations of all the other
variables are about 1% (or less) than that of Proline.

Table 3

| Principal Components Stal. Dev.
1 2 3 4 5
Alzohol 0,001 0,013 0.014 -0L030 0129 0.8
Malicacic -0.001 0,009 0167 0427 -0.402 1.2
Ash 0.000 -0.002 0,054 -000e 0.006 0.3
AshAlcalinity -0.004 -0.045 0.97 EI 0176 0,060 3.6
Magnesium I_'I.I:I“Iill -1, 998 -0.040 -0.031 0006 14.7
Total Phenals 0,001 0.002 -0.015 0,164 0316 0.7
Flavanoids 0,002 0,000 -0.045 0.214 0545 1.1
Monflavanoid Phenols 0,000 0,002 0,004 -0.025 -0.040 01
Froanthooyanins 0.0m 0007 -0.021 008z 0,244 Q.7
Color Intensity 0.002 0022 0.9 0.536 16
Hus 0.000 -0.002 -0.021 0.096 0,064 0.z
OD2e0/0035 0.001 -0.002 -0.022 0220 0.261 0.7
Froline 1 .ma 0,014 0,004 0,001 -0.004 251.5
Variance| 122584452 194,345 11424 2.388 1.391
% Variance 90.230%  087%  0.008%  0002%  0.001%
Cumulative % 99.830% 99.987% 99.996% 99.998% 99.009%

The principal components analysis without scaling is trivial for this data set, The first
four components are the four variables with the largest variances in the data and account
for almost 100% of the total variance in the data.

Principal Components and Orthogonal Least Squares

The weights computed by principal components analysis have an interesting alternate
interpretation. Suppose that we wanted to compute fit a linear surface (a straight line for
2-dimensions and a plane for 3-dimensions) to the data points where the objective was to
minimize the sum of squared errors measured by the squared orthogonal distances
(squared lengths of perpendiculars) from the points to the fitted linear surface. The



weights of the first principal component would define the best linear surface that
minimizes this sum. The variance of the first principal component expressed as a
percentage of the total variation in the data would be the portion of the variability
explained by the fit in a manner analogous to R2 in multiple linear regression. This
property can be exploited to find nonlinear structure in high dimensional data by
considering perpendicular projections on non-linear surfaces (Hastie and Stuetzle 1989).



