
Lecture 6

Artificial Neural Networks

1

�

�

1 Artificial Neural Networks

In this note we provide an overview of the key concepts that have led to
the emergence of Artificial Neural Networks as a major paradigm for Data
Mining applications. Neural nets have gone through two major development
periods -the early 60’s and the mid 80’s. They were a key development in
the field of machine learning. Artificial Neural Networks were inspired by
biological findings relating to the behavior of the brain as a network of units
called neurons. The human brain is estimated to have around 10 billion
neurons each connected on average to 10,000 other neurons. Each neuron
receives signals through synapses that control the effects of the signal on
the neuron. These synaptic connections are believed to play a key role in
the behavior of the brain. The fundamental building block in an Artificial
Neural Network is the mathematical model of a neuron as shown in Figure
1. The three basic components of the (artificial) neuron are:

1. The synapses or connecting links that provide weights, wj , to the
input values, xj for j = 1, ...m;

2. An adder that sums the weighted input values to compute the
m

input to the activation function v = w0 + wj xj ,where w0 is called the
j=1

bias (not to be confused with statistical bias in prediction or estimation) is
a numerical value associated with the neuron. It is convenient to think of
the bias as the weight for an input x0 whose value is always equal to one,

m
so that v = wj xj ;

j=0

3. An activation function g (also called a squashing function) that
maps v to g(v) the output value of the neuron. This function is a monotone
function.

2

Figure 1

While there are numerous different (artificial) neural network architec­
tures that have been studied by researchers, the most successful applica­
tions in data mining of neural networks have been multilayer feedforward
networks. These are networks in which there is an input layer consisting
of nodes that simply accept the input values and successive layers of nodes
that are neurons as depicted in Figure 1. The outputs of neurons in a layer
are inputs to neurons in the next layer. The last layer is called the output
layer. Layers between the input and output layers are known as hidden
layers. Figure 2 is a diagram for this architecture.

Figure 2

In a supervised setting where a neural net is used to predict a numerical
quantity there is one neuron in the output layer and its output is the predic­
tion. When the network is used for classification, the output layer typically
has as many nodes as the number of classes and the output layer node with

3

�

the largest output value gives the network’s estimate of the class for a given
input. In the special case of two classes it is common to have just one node
in the output layer, the classification between the two classes being made
by applying a cut-off to the output value at the node.

1.1 Single layer networks

Let us begin by examining neural networks with just one layer of neurons
(output layer only, no hidden layers). The simplest network consists of just
one neuron with the function g chosen to be the identity function, g(v) = v

for all v. In this case notice that the output of the network is

m

wj xj , a
j=0

linear function of the input vector x with components xj . If we are modeling
the dependent variable y using multiple linear regression, we can interpret
the neural network as a structure that predicts a value y� for a given input
vector x with the weights being the coefficients. If we choose these weights
to minimize the mean square error using observations in a training set, these
weights would simply be the least squares estimates of the coefficients. The
weights in neural nets are also often designed to minimize mean square error
in a training data set. There is, however, a different orientation in the case
of neural nets: the weights are ”learned”. The network is presented with
cases from the training data one at a time and the weights are revised after
each case in an attempt to minimize the mean square error. This process of
incremental adjustment of weights is based on the error made on training
cases and is known as ’training’ the neural net. The almost universally used
dynamic updating algorithm for the neural net version of linear regression is
known as the Widrow-Hoff rule or the least-mean-square (LMS) algorithm.
It is simply stated. Let x(i) denote the input vector x for the ith case used to
train the network, and the weights before this case is presented to the net by
the vector w(i). The updating rule is w(i+1) = w(i)+η(y(i)−y�(i))x(i) with
w(0) = 0. It can be shown that if the network is trained in this manner by
repeatedly presenting test data observations one-at-a-time then for suitably
small (absolute) values of η the network will learn (converge to) the optimal
values of w. Note that the training data may have to be presented several
times for w(i) to be close to the optimal w. The advantage of dynamic
updating is that the network tracks moderate time trends in the underlying
linear model quite effectively.

If we consider using the single layer neural net for classification into c
classes, we would use c nodes in the output layer. If we think of classical

4

�

discriminant analysis in neural network terms, the coefficients in Fisher’s
classification functions give us weights for the network that are optimal
if the input vectors come from Multivariate Normal distributions with a
common covariance matrix.

For classification into two classes, the linear optimization approach that
we examined in class, can be viewed as choosing optimal weights in a single
layer neural network using the appropriate objective function.

Maximum likelihood coefficients for logistic regression can also be con­
sidered as weights in a neural network to minimize a function of�the residuals

ev
called the deviance. In this case the logistic function g(v) = 1+ev is the
activation function for the output node.

1.2 Multilayer Neural networks

Multilayer neural networks are undoubtedly the most popular networks used
in applications. While it is possible to consider many activation functions, in
practice �it has�been found that the logistic (also called the sigmoid) function

ev
g(v) = 1+ev as the activation function (or minor variants such as the

tanh function) works best. In fact the revival of interest in neural nets was
sparked by successes in training neural networks using this function in place
of the historically (biologically inspired) step function (the ”perceptron”}.
Notice that using a linear function does not achieve anything in multilayer
networks that is beyond what can be done with single layer networks with
linear activation functions. The practical value of the logistic function arises
from the fact that it is almost linear in the range where g is between 0.1 and
0.9 but has a squashing effect on very small or very large values of v.

In theory it is sufficient to consider networks with two layers of neurons–
one hidden and one output layer–and this is certainly the case for most
applications. There are, however, a number of situations where three and
sometimes four and five layers have been more effective. For prediction the
output node is often given a linear activation function to provide forecasts
that are not limited to the zero to one range. An alternative is to scale the
output to the linear part (0.1 to 0.9) of the logistic function.

Unfortunately there is no clear theory to guide us on choosing the number
of nodes in each hidden layer or indeed the number of layers. The common
practice is to use trial and error, although there are schemes for combining

5

optimization methods such as genetic algorithms with network training for
these parameters.

Since trial and error is a necessary part of neural net applications it is
important to have an understanding of the standard method used to train
a multilayered network: backpropagation. It is no exaggeration to say that
the speed of the backprop algorithm made neural nets a practical tool in
the manner that the simplex method made linear optimization a practical
tool. The revival of strong interest in neural nets in the mid 80s was in large
measure due to the efficiency of the backprop algorithm.

1.3 Example1: Fisher’s Iris data

Let us look at the Iris data that Fisher analyzed using Discriminant Analysis.
Recall that the data consisted of four measurements on three types of iris
flowers. There are 50 observations for each class of iris. A part of the data
is reproduced below.

6

6

OBS# SPECIES CLASSCODE
 SEPLEN SEPW PETLEN PETW
1 Iris-setosa 1 5.1 3.5 1.4 0.2
2 Iris-setosa 1 4.9 3 1.4 0.2
3 Iris-setosa 1 4.7 3.2 1.3 0.2
4 Iris-setosa 1 4.6 3.1 1.5 0.2
5 Iris-setosa 1 5 3.6 1.4 0.2
6 Iris-setosa 1 5.4 3.9 1.7 0.4
7 Iris-setosa 1 4.6 3.4 1.4 0.3
8 Iris-setosa 1 5 3.4 1.5 0.2
9 Iris-setosa 1 4.4 2.9 1.4 0.2
10 Iris-setosa 1 4.9 3.1 1.5 0.1
...
51 Iris-versicolor 2 7 3.2 4.7 1.4
52 Iris-versicolor 2 6.4 3.2 4.5 1.5
53 Iris-versicolor 2 6.9 3.1 4.9 1.5
54 Iris-versicolor 2 5.5 2.3 4 1.3
55 Iris-versicolor 2 6.5 2.8 4.6 1.5
56 Iris-versicolor 2 5.7 2.8 4.5 1.3
57 Iris-versicolor 2 6.3 3.3 4.7 1.6
58 Iris-versicolor 2 4.9 2.4 3.3 1
59 Iris-versicolor 2 6.6 2.9 4.6 1.3
60 Iris-versicolor 2 5.2 2.7 3.9 1.4
...

101 Iris-virginica 3 6.3 3.3 6 2.5
102 Iris-virginica 3 5.8 2.7 5.1 1.9
103 Iris-virginica 3 7.1 3 5.9 2.1
104 Iris-virginica 3 6.3 2.9 5.6 1.8
105 Iris-virginica 3 6.5 3 5.8 2.2
106 Iris-virginica 3 7.6 3 .6 2.1
107 Iris-virginica 3 4.9 2.5 4.5 1.7
108 Iris-virginica 3 7.3 2.9 6.3 1.8
109 Iris-virginica 3 6.7 2.5 5.8 1.8
110 Iris-virginica 3 7.2 3.6 6.1 2.5

If we use a neural net architecture for this classification problem we will
need 4 nodes (not counting the bias node) one for each of the 4 independent
variables in the input layer and 3 neurons (one for each class) in the output
layer. Let us select one hidden layer with 25 neurons. Notice that there will
be a total of 25 connections from each node in the input layer to nodes in
the hidden layer. This makes a total of 4 x 25 = 100 connections between

7

the input layer and the hidden layer. In addition there will be a total of 3
connections from each node in the hidden layer to nodes in the output layer.
This makes a total of 25 x 3 = 75 connections between the hidden layer and
the output layer. Using the standard logistic activation functions, the net-
work was trained with a run consisting of 60,000 iterations. Each iteration
consists of presentation to the input layer of the independent variables in a
case, followed by successive computations of the outputs of the neurons of
the hidden layer and the output layer using the appropriate weights. The
output values of neurons in the output layer are used to compute the er­
ror. This error is used to adjust the weights of all the connections in the
network using the backward propagation (“backprop”) to complete the it­
eration. Since the training data has 150 cases, each case was presented to
the network 400 times. Another way of stating this is to say the network
was trained for 400 epochs where an epoch consists of one sweep through
the entire training data. The results for the last epoch of training the neural
net on this data are shown below:

Iris Output 1

Classification Confusion Matrix

Desired Computed Class
Class 1 2 3 Total
1 50 50

2 49 1 50

3 1 49 50

Total 50 50 50 150

Error Report

Class Patterns # Errors % Errors StdDev
1 50 0 0.00 (0.00)

2 50 1 2.00 (1.98)

3 50 1 2.00 (1.98)

Overall 150 2 1.3 (0.92)

The classification error of 1.3% is better than the error using discriminant
analysis which was 2% (See lecture note on Discriminant Analysis). Notice
that had we stopped after only one pass of the data (150 iterations) the

8

error is much worse (75%) as shown below:

Iris Output 2

Classification Confusion Matrix

Desired Computed Class
Class 1 2 3 Total
1 10 7 2 19

2 13 1 6 20

3 12 5 4 21

Total 35 13 12 60

The classification error rate of 1.3% was obtained by careful choice of
key control parameters for the training run by trial and error. If we set
the control parameters to poor values we can have terrible results. To un­
derstand the parameters involved we need to understand how the backward
propagation algorithm works.

1.4 The Backward Propagation Algorithm

We will discuss the backprop algorithm for classification problems. There is
a minor adjustment for prediction problems where we are trying to predict
a continuous numerical value. In that situation we change the activation
function for output layer neurons to the identity function that has output
value=input value. (An alternative is to rescale and recenter the logistic
function to permit the outputs to be approximately linear in the range of
dependent variable values).

The backprop algorithm cycles through two distinct passes, a forward
pass followed by a backward pass through the layers of the network. The
algorithm alternates between these passes several times as it scans the train­
ing data. Typically, the training data has to be scanned several times before
the networks ”learns” to make good classifications.

Forward Pass: Computation of outputs of all the neurons in
the network The algorithm starts with the first hidden layer using as
input values the independent variables of a case (often called an exemplar
in the machine learning community) from the training data set. The neuron
outputs are computed for all neurons in the first hidden layer by performing

9

the relevant sum and activation function evaluations. These outputs are
the inputs for neurons in the second hidden layer. Again the relevant sum
and activation function calculations are performed to compute the outputs
of second layer neurons. This continues layer by layer until we reach the
output layer and compute the outputs for this layer. These output values
constitute the neural net’s guess at the value of the dependent variable. If
we are using the neural net for classification, and we have c classes, we will
have c neuron outputs from the activation functions and we use the largest
value to determine the net’s classification. (If c = 2, we can use just one
output node with a cut-off value to map an numerical output value to one
of the two classes).

Let us denote by wij the weight of the connection from node i to node j.
The values of wij are initialized to small (generally random) numbers in the
range 0.00 ± 0.05. These weights are adjusted to new values in the backward
pass as described below.

Backward pass: Propagation of error and adjustment of weights
This phase begins with the computation of error at each neuron in the output
layer. A popular error function is the squared difference between ok the
output of node k and yk the target value for that node. The target value
is just 1 for the output node corresponding to the class of the exemplar
and zero for other output nodes.(In practice it has been found better to use
values of 0.9 and 0.1 respectively.) For each output layer node compute its
error term as δk = ok (1 − ok)(yk − ok). These errors are used to adjust the
weights of the connections between the last-but-one layer of the network and
the output layer. The adjustment is similar to the simple Widrow-Huff rule
that we saw earlier in this note. The new value of the weight wjk of the
connection from node j to node k is given by: wnew = wold

jk jk + ηoj δk . Here η is
an important tuning parameter that is chosen by trial and error by repeated
runs on the training data. Typical values for η are in the range 0.1 to 0.9.
Low values give slow but steady learning, high values give erratic learning
and may lead to an unstable network.

The process is repeated for the connections between nodes in the last
hidden layer and the last-but-one hidden layer. The weight for the connec­
tion between nodes i and j is given by: wnew = wold + ηoiδj where δj = ij ij
oj (1 − oj)

�
k wjk δk , for each node j in the last hidden layer.

The backward propagation of weight adjustments along these lines con­
tinues until we reach the input layer. At this time we have a new set of
weights on which we can make a new forward pass when presented with a
training data observation.

10

1.4.1 Multiple Local Optima and Epochs

The backprop algorithm is a version of the steepest descent optimization
method applied to the problem of finding the weights that minimize the
error function of the network output. Due to the complexity of the function
and the large numbers of weights that are being “trained” as the network
“learns”, there is no assurance that the backprop algorithm (and indeed any
practical algorithm) will find the optimum weights that minimize error. the
procedure can get stuck at a local minimum. It has been found useful to
randomize the order of presentation of the cases in a training set between
different scans. It is possible to speed up the algorithm by batching, that is
updating the weights for several exemplars in a pass. However, at least the
extreme case of using the entire training data set on each update has been
found to get stuck frequently at poor local minima.

A single scan of all cases in the training data is called an epoch. Most
applications of feedforward networks and backprop require several epochs
before errors are reasonably small. A number of modifications have been
proposed to reduce the epochs needed to train a neural net. One commonly
employed idea is to incorporate a momentum term that injects some inertia
in the weight adjustment on the backward pass. This is done by adding a
term to the expression for weight adjustment for a connection that is a frac­
tion of the previous weight adjustment for that connection. This fraction is
called the momentum control parameter. High values of the momentum pa­
rameter will force successive weight adjustments to be in similar directions.
Another idea is to vary the adjustment parameter δ so that it decreases as
the number of epochs increases. Intuitively this is useful because it avoids
overfitting that is more likely to occur at later epochs than earlier ones.

1.4.2 Overfitting and the choice of training epochs

A weakness of the neural network is that it can be easily overfitted, causing
the error rate on validation data to be much larger than the error rate on the
training data. It is therefore important not to overtrain the data. A good
method for choosing the number of training epochs is to use the validation
data set periodically to compute the error rate for it while the network is
being trained. The validation error decreases in the early epochs of backprop
but after a while it begins to increase. The point of minimum validation
error is a good indicator of the best number of epochs for training and the
weights at that stage are likely to provide the best error rate in new data.

11

1.5 Adaptive Selection of Architecture

One of the time consuming and complex aspects of using backprop is that
we need to decide on an architecture before we can use backprop. The
usual procedure is to make intelligent guesses using past experience and to
do several trial and error runs on different architectures. Algorithms exist
that grow the number of nodes selectively during training or trim them in a
manner analogous to what we have seen with CART. Research continues on
such methods. However, as of now there seems to be no automatic method
that is clearly superior to the trial and error approach.

1.6 Successful Applications

There have been a number of very successful applications of neural nets in
engineering applications. One of the well known ones is ALVINN that is an
autonomous vehicle driving application for normal speeds on highways. The
neural net uses a 30x32 grid of pixel intensities from a fixed camera on the
vehicle as input, the output is the direction of steering. It uses 30 output
units representing classes such as “sharp left”, “straight ahead”, and “bear
right”. It has 960 input units and a single layer of 4 hidden neurons. The
backprop algorithm is used to train ALVINN.

A number of successful applications have been reported in financial ap­
plications (see reference 2) such as bankruptcy predictions, currency market
trading, picking stocks and commodity trading. Credit card and CRM ap­
plications have also been reported.

2 References

1.	 Bishop, Christopher: Neural Networks for Pattern Recognition, Ox-
ford, 1995.

2.	 Trippi, Robert and Turban, Efraim (editors): Neural Networks in Fi­
nance and Investing, McGraw Hill 1996.

12

