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1 Artificial Neural Networks 

In this note we provide an overview of the key concepts that have led to 
the emergence of Artificial Neural Networks as a major paradigm for Data 
Mining applications. Neural nets have gone through two major development 
periods -the early 60’s and the mid 80’s. They were a key development in 
the field of machine learning. Artificial Neural Networks were inspired by 
biological findings relating to the behavior of the brain as a network of units 
called neurons. The human brain is estimated to have around 10 billion 
neurons each connected on average to 10,000 other neurons. Each neuron 
receives signals through synapses that control the effects of the signal on 
the neuron. These synaptic connections are believed to play a key role in 
the behavior of the brain. The fundamental building block in an Artificial 
Neural Network is the mathematical model of a neuron as shown in Figure 
1. The three basic components of the (artificial) neuron are: 

1. The synapses or connecting links that provide weights, wj , to the 
input values, xj for j = 1, ...m; 

2. An adder that sums the weighted input values to compute the 
m 

input to the activation function v = w0 + wj xj ,where w0 is called the 
j=1 

bias (not to be confused with statistical bias in prediction or estimation) is 
a numerical value associated with the neuron. It is convenient to think of 
the bias as the weight for an input x0 whose value is always equal to one, 

m 
so that v = wj xj ; 

j=0 

3. An activation function g (also called a squashing function) that 
maps v to g(v) the output value of the neuron. This function is a monotone 
function. 
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Figure 1 

While there are numerous different (artificial) neural network architec­
tures that have been studied by researchers, the most successful applica­
tions in data mining of neural networks have been multilayer feedforward 
networks. These are networks in which there is an input layer consisting 
of nodes that simply accept the input values and successive layers of nodes 
that are neurons as depicted in Figure 1. The outputs of neurons in a layer 
are inputs to neurons in the next layer. The last layer is called the output 
layer. Layers between the input and output layers are known as hidden 
layers. Figure 2 is a diagram for this architecture. 

Figure 2 

In a supervised setting where a neural net is used to predict a numerical 
quantity there is one neuron in the output layer and its output is the predic­
tion. When the network is used for classification, the output layer typically 
has as many nodes as the number of classes and the output layer node with 
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the largest output value gives the network’s estimate of the class for a given 
input. In the special case of two classes it is common to have just one node 
in the output layer, the classification between the two classes being made 
by applying a cut-off to the output value at the node. 

1.1 Single layer networks 

Let us begin by examining neural networks with just one layer of neurons 
(output layer only, no hidden layers). The simplest network consists of just 
one neuron with the function g chosen to be the identity function, g(v) =  v 

for all v. In this case notice that the output of the network is

m 

wj xj , a  
j=0 

linear function of the input vector x with components xj . If we are modeling 
the dependent variable y using multiple linear regression, we can interpret 
the neural network as a structure that predicts a value y� for a given input 
vector x with the weights being the coefficients. If we choose these weights 
to minimize the mean square error using observations in a training set, these 
weights would simply be the least squares estimates of the coefficients. The 
weights in neural nets are also often designed to minimize mean square error 
in a training data set. There is, however, a different orientation in the case 
of neural nets: the weights are ”learned”. The network is presented with 
cases from the training data one at a time and the weights are revised after 
each case in an attempt to minimize the mean square error. This process of 
incremental adjustment of weights is based on the error made on training 
cases and is known as ’training’ the neural net. The almost universally used 
dynamic updating algorithm for the neural net version of linear regression is 
known as the Widrow-Hoff rule or the least-mean-square (LMS) algorithm. 
It is simply stated. Let x(i) denote the input vector x for the ith case used to 
train the network, and the weights before this case is presented to the net by 
the vector w(i). The updating rule is w(i+1) = w(i)+η(y(i)−y�(i))x(i) with 
w(0) = 0. It can be shown that if the network is trained in this manner by 
repeatedly presenting test data observations one-at-a-time then for suitably 
small (absolute) values of η the network will learn (converge to) the optimal 
values of w. Note that the training data may have to be presented several 
times for w(i) to be close to the optimal w. The advantage of dynamic 
updating is that the network tracks moderate time trends in the underlying 
linear model quite effectively. 

If we consider using the single layer neural net for classification into c 
classes, we would use c nodes in the output layer. If we think of classical 
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discriminant analysis in neural network terms, the coefficients in Fisher’s 
classification functions give us weights for the network that are optimal 
if the input vectors come from Multivariate Normal distributions with a 
common covariance matrix. 

For classification into two classes, the linear optimization approach that 
we examined in class, can be viewed as choosing optimal weights in a single 
layer neural network using the appropriate objective function. 

Maximum likelihood coefficients for logistic regression can also be con­
sidered as weights in a neural network to minimize a function of�the residuals 

ev
called the deviance. In this case the logistic function g(v) =  1+ev is the 
activation function for the output node. 

1.2 Multilayer Neural networks 

Multilayer neural networks are undoubtedly the most popular networks used 
in applications. While it is possible to consider many activation functions, in 
practice �it has�been found that the logistic (also called the sigmoid) function 

ev 
g(v) =  1+ev as the activation function (or minor variants such as the 

tanh function) works best. In fact the revival of interest in neural nets was 
sparked by successes in training neural networks using this function in place 
of the historically (biologically inspired) step function (the ”perceptron”}. 
Notice that using a linear function does not achieve anything in multilayer 
networks that is beyond what can be done with single layer networks with 
linear activation functions. The practical value of the logistic function arises 
from the fact that it is almost linear in the range where g is between 0.1 and 
0.9 but has a squashing effect on very small or very large values of v. 

In theory it is sufficient to consider networks with two layers of neurons– 
one hidden and one output layer–and this is certainly the case for most 
applications. There are, however, a number of situations where three and 
sometimes four and five layers have been more effective. For prediction the 
output node is often given a linear activation function to provide forecasts 
that are not limited to the zero to one range. An alternative is to scale the 
output to the linear part (0.1 to 0.9) of the logistic function. 

Unfortunately there is no clear theory to guide us on choosing the number 
of nodes in each hidden layer or indeed the number of layers. The common 
practice is to use trial and error, although there are schemes for combining 
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optimization methods such as genetic algorithms with network training for 
these parameters. 

Since trial and error is a necessary part of neural net applications it is 
important to have an understanding of the standard method used to train 
a multilayered network: backpropagation. It is no exaggeration to say that 
the speed of the backprop algorithm made neural nets a practical tool in 
the manner that the simplex method made linear optimization a practical 
tool. The revival of strong interest in neural nets in the mid 80s was in large 
measure due to the efficiency of the backprop algorithm. 

1.3 Example1: Fisher’s Iris data 

Let us look at the Iris data that Fisher analyzed using Discriminant Analysis. 
Recall that the data consisted of four measurements on three types of iris 
flowers. There are 50 observations for each class of iris. A part of the data 
is reproduced below. 
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OBS# SPECIES CLASSCODE
 SEPLEN SEPW PETLEN PETW 
1 Iris-setosa 1 5.1 3.5 1.4 0.2 
2 Iris-setosa 1 4.9 3 1.4 0.2 
3 Iris-setosa 1 4.7 3.2 1.3 0.2 
4 Iris-setosa 1 4.6 3.1 1.5 0.2 
5 Iris-setosa 1 5 3.6 1.4 0.2 
6 Iris-setosa 1 5.4 3.9 1.7 0.4 
7 Iris-setosa 1 4.6 3.4 1.4 0.3 
8 Iris-setosa 1 5 3.4 1.5 0.2 
9 Iris-setosa 1 4.4 2.9 1.4 0.2 
10 Iris-setosa 1 4.9 3.1 1.5 0.1 
... ... ... ... ... ... ... 
51 Iris-versicolor 2 7 3.2 4.7 1.4 
52 Iris-versicolor 2 6.4 3.2 4.5 1.5 
53 Iris-versicolor 2 6.9 3.1 4.9 1.5 
54 Iris-versicolor 2 5.5 2.3 4 1.3 
55 Iris-versicolor 2 6.5 2.8 4.6 1.5 
56 Iris-versicolor 2 5.7 2.8 4.5 1.3 
57 Iris-versicolor 2 6.3 3.3 4.7 1.6 
58 Iris-versicolor 2 4.9 2.4 3.3 1 
59 Iris-versicolor 2 6.6 2.9 4.6 1.3 
60 Iris-versicolor 2 5.2 2.7 3.9 1.4 
... ... ... ... ... ... ... 

101 Iris-virginica 3 6.3 3.3 6 2.5 
102 Iris-virginica 3 5.8 2.7 5.1 1.9 
103 Iris-virginica 3 7.1 3 5.9 2.1 
104 Iris-virginica 3 6.3 2.9 5.6 1.8 
105 Iris-virginica 3 6.5 3 5.8 2.2 
106 Iris-virginica 3 7.6  3 .6  2.1 
107 Iris-virginica 3 4.9 2.5 4.5 1.7 
108 Iris-virginica 3 7.3 2.9 6.3 1.8 
109 Iris-virginica 3 6.7 2.5 5.8 1.8 
110 Iris-virginica 3 7.2 3.6 6.1 2.5 

If we use a neural net architecture for this classification problem we will 
need 4 nodes (not counting the bias node) one for each of the 4 independent 
variables in the input layer and 3 neurons (one for each class) in the output 
layer. Let us select one hidden layer with 25 neurons. Notice that there will 
be a total of 25 connections from each node in the input layer to nodes in 
the hidden layer. This makes a total of 4 x 25 = 100 connections between 
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the input layer and the hidden layer. In addition there will be a total of 3 
connections from each node in the hidden layer to nodes in the output layer. 
This makes a total of 25 x 3 = 75 connections between the hidden layer and 
the output layer. Using the standard logistic activation functions, the net-
work was trained with a run consisting of 60,000 iterations. Each iteration 
consists of presentation to the input layer of the independent variables in a 
case, followed by successive computations of the outputs of the neurons of 
the hidden layer and the output layer using the appropriate weights. The 
output values of neurons in the output layer are used to compute the er­
ror. This error is used to adjust the weights of all the connections in the 
network using the backward propagation (“backprop”) to complete the it­
eration. Since the training data has 150 cases, each case was presented to 
the network 400 times. Another way of stating this is to say the network 
was trained for 400 epochs where an epoch consists of one sweep through 
the entire training data. The results for the last epoch of training the neural 
net on this data are shown below: 

Iris Output 1 

Classification Confusion Matrix 

Desired Computed Class 
Class 1 2 3 Total 
1 50 50

2 49 1 50

3 1 49 50


Total 50 50 50 150 

Error Report 

Class Patterns # Errors % Errors StdDev 
1 50 0 0.00 ( 0.00)

2 50 1 2.00 ( 1.98)

3 50 1 2.00 ( 1.98)


Overall 150 2 1.3 ( 0.92) 

The classification error of 1.3% is better than the error using discriminant 
analysis which was 2% (See lecture note on Discriminant Analysis). Notice 
that had we stopped after only one pass of the data (150 iterations) the 
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error is much worse (75%) as shown below: 

Iris Output 2 

Classification Confusion Matrix 

Desired Computed Class 
Class 1 2 3 Total 
1 10 7 2 19

2 13 1 6 20

3 12 5 4 21


Total 35 13 12 60 

The classification error rate of 1.3% was obtained by careful choice of 
key control parameters for the training run by trial and error. If we set 
the control parameters to poor values we can have terrible results. To un­
derstand the parameters involved we need to understand how the backward 
propagation algorithm works. 

1.4 The Backward Propagation Algorithm 

We will discuss the backprop algorithm for classification problems. There is 
a minor adjustment for prediction problems where we are trying to predict 
a continuous numerical value. In that situation we change the activation 
function for output layer neurons to the identity function that has output 
value=input value. (An alternative is to rescale and recenter the logistic 
function to permit the outputs to be approximately linear in the range of 
dependent variable values). 

The backprop algorithm cycles through two distinct passes, a forward 
pass followed by a backward pass through the layers of the network. The 
algorithm alternates between these passes several times as it scans the train­
ing data. Typically, the training data has to be scanned several times before 
the networks ”learns” to make good classifications. 

Forward Pass: Computation of outputs of all the neurons in 
the network The algorithm starts with the first hidden layer using as 
input values the independent variables of a case (often called an exemplar 
in the machine learning community) from the training data set. The neuron 
outputs are computed for all neurons in the first hidden layer by performing 
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the relevant sum and activation function evaluations. These outputs are 
the inputs for neurons in the second hidden layer. Again the relevant sum 
and activation function calculations are performed to compute the outputs 
of second layer neurons. This continues layer by layer until we reach the 
output layer and compute the outputs for this layer. These output values 
constitute the neural net’s guess at the value of the dependent variable. If 
we are using the neural net for classification, and we have c classes, we will 
have c neuron outputs from the activation functions and we use the largest 
value to determine the net’s classification. (If c = 2, we can use just one 
output node with a cut-off value to map an numerical output value to one 
of the two classes). 

Let us denote by wij the weight of the connection from node i to node j. 
The values of wij are initialized to small (generally random) numbers in the 
range 0.00 ± 0.05. These weights are adjusted to new values in the backward 
pass as described below. 

Backward pass: Propagation of error and adjustment of weights 
This phase begins with the computation of error at each neuron in the output 
layer. A popular error function is the squared difference between ok the 
output of node k and yk the target value for that node. The target value 
is just 1 for the output node corresponding to the class of the exemplar 
and zero for other output nodes.(In practice it has been found better to use 
values of 0.9 and 0.1 respectively.) For each output layer node compute its 
error term as δk = ok (1 − ok)(yk − ok ). These errors are used to adjust the 
weights of the connections between the last-but-one layer of the network and 
the output layer. The adjustment is similar to the simple Widrow-Huff rule 
that we saw earlier in this note. The new value of the weight wjk of the 
connection from node j to node k is given by: wnew = wold 

jk jk + ηoj δk . Here η is 
an important tuning parameter that is chosen by trial and error by repeated 
runs on the training data. Typical values for η are in the range 0.1 to 0.9. 
Low values give slow but steady learning, high values give erratic learning 
and may lead to an unstable network. 

The process is repeated for the connections between nodes in the last 
hidden layer and the last-but-one hidden layer. The weight for the connec­
tion between nodes i and j is given by: wnew = wold + ηoiδj where δj = ij ij 
oj (1 − oj ) 

� 
k wjk δk , for each node j in the last hidden layer. 

The backward propagation of weight adjustments along these lines con­
tinues until we reach the input layer. At this time we have a new set of 
weights on which we can make a new forward pass when presented with a 
training data observation. 
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1.4.1 Multiple Local Optima and Epochs 

The backprop algorithm is a version of the steepest descent optimization 
method applied to the problem of finding the weights that minimize the 
error function of the network output. Due to the complexity of the function 
and the large numbers of weights that are being “trained” as the network 
“learns”, there is no assurance that the backprop algorithm (and indeed any 
practical algorithm) will find the optimum weights that minimize error. the 
procedure can get stuck at a local minimum. It has been found useful to 
randomize the order of presentation of the cases in a training set between 
different scans. It is possible to speed up the algorithm by batching, that is 
updating the weights for several exemplars in a pass. However, at least the 
extreme case of using the entire training data set on each update has been 
found to get stuck frequently at poor local minima. 

A single scan of all cases in the training data is called an epoch. Most 
applications of feedforward networks and backprop require several epochs 
before errors are reasonably small. A number of modifications have been 
proposed to reduce the epochs needed to train a neural net. One commonly 
employed idea is to incorporate a momentum term that injects some inertia 
in the weight adjustment on the backward pass. This is done by adding a 
term to the expression for weight adjustment for a connection that is a frac­
tion of the previous weight adjustment for that connection. This fraction is 
called the momentum control parameter. High values of the momentum pa­
rameter will force successive weight adjustments to be in similar directions. 
Another idea is to vary the adjustment parameter δ so that it decreases as 
the number of epochs increases. Intuitively this is useful because it avoids 
overfitting that is more likely to occur at later epochs than earlier ones. 

1.4.2 Overfitting and the choice of training epochs 

A weakness of the neural network is that it can be easily overfitted, causing 
the error rate on validation data to be much larger than the error rate on the 
training data. It is therefore important not to overtrain the data. A good 
method for choosing the number of training epochs is to use the validation 
data set periodically to compute the error rate for it while the network is 
being trained. The validation error decreases in the early epochs of backprop 
but after a while it begins to increase. The point of minimum validation 
error is a good indicator of the best number of epochs for training and the 
weights at that stage are likely to provide the best error rate in new data. 

11




1.5 Adaptive Selection of Architecture 

One of the time consuming and complex aspects of using backprop is that 
we need to decide on an architecture before we can use backprop. The 
usual procedure is to make intelligent guesses using past experience and to 
do several trial and error runs on different architectures. Algorithms exist 
that grow the number of nodes selectively during training or trim them in a 
manner analogous to what we have seen with CART. Research continues on 
such methods. However, as of now there seems to be no automatic method 
that is clearly superior to the trial and error approach. 

1.6 Successful Applications 

There have been a number of very successful applications of neural nets in 
engineering applications. One of the well known ones is ALVINN that is an 
autonomous vehicle driving application for normal speeds on highways. The 
neural net uses a 30x32 grid of pixel intensities from a fixed camera on the 
vehicle as input, the output is the direction of steering. It uses 30 output 
units representing classes such as “sharp left”, “straight ahead”, and “bear 
right”. It has 960 input units and a single layer of 4 hidden neurons. The 
backprop algorithm is used to train ALVINN. 

A number of successful applications have been reported in financial ap­
plications (see reference 2) such as bankruptcy predictions, currency market 
trading, picking stocks and commodity trading. Credit card and CRM ap­
plications have also been reported. 
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