
Lecture 16

Discovering Association Rules

in

Transaction Databases

1

What are Association Rules?

The availability of detailed information on customer transactions has led to
the development of techniques that automatically look for associations
between items that are stored in the database. An example is data collected
using bar-code scanners in supermarkets. Such ‘market basket’ databases
consist of a large number of transaction records. Each record lists all items
bought by a customer on a single purchase transaction. Managers would be
interested to know if certain groups of items are consistently purchased
together. They could use this data for store layouts to place items optimally
with respect to each other, they could use such information for cross-selling,
for promotions, for catalog design and to identify customer segments based
on buying patterns. Association rules provide information of this type in the
form of “if-then” statements. These rules are computed from the data and,
unlike the if-then rules of logic, association rules are probabilistic in nature.
In addition to the antecedent (the “if” part) and the consequent (the “then”
part) an association rule has two numbers that express the degree of
uncertainty about the rule. In association analysis the antecedent and
consequent are sets of items (called itemsets) that are disjoint (do not have
any items in common).

The first number is called the support for the rule. The support is simply the
number of transactions that include all items in the antecedent and
consequent parts of the rule. (The support is sometimes expressed as a
percentage of the total number of records in the database.)

The other number is known as the confidence of the rule. Confidence is the
ratio of the number of transactions that include all items in the consequent as
well as the antecedent (namely, the support) to the number of transactions
that include all items in the antecedent. For example if a supermarket
database has 100,000 point-of-sale transactions, out of which 2,000 include
both items A and B and 800 of these include item C, the association rule “If
A and B are purchased then C is purchased on the same trip” has a support
of 800 transactions (alternatively 0.8% = 800/100,000) and a confidence of
40% (=800/2,000).

One way to think of support is that it is the probability that a randomly
selected transaction from the database will contain all items in the
antecedent and the consequent, whereas the confidence is the conditional

2

1
2
3
4
5
6
7

8

9

probability that a randomly selected transaction will include all the items in
the consequent given that the transaction includes all the items in the
antecedent.

Example 1 (Han and Kamber)

The manager of the AllElectronics retail store would like to know what
items sell together. He has a database of transactions as shown below:

Transaction ID Item Codes
1 2 5
2 4
2 3
1 2 4
1 3
2 3
1 3

1 2 3 5

1 2 3

There are 9 transactions. Each transaction is a record of the items bought
together in that transaction. Transaction 1 is a point-of-sale purchase of
items 1, 2, and 5. Transaction 2 is a joint purchase of items 2 and 4, etc.
Suppose that we want association rules between items for this database that
have a support count of at least 2 (equivalent to a percentage support of
2/9=22%). By enumeration we can see that only the following itemsets have
a count of at least 2:

{1} with support count of 6;
{2} with support count of 7;
{3} with support count of 6;
{4} with support count of 2;
{5} with support count of 2;
{1, 2} with support count of 4;
{1, 3} with support count of 4;
{1, 5} with support count of 2;
{2, 3} with support count of 4;
{2, 4} with support count of 2;
{2, 5} with support count of 2;
{1, 2, 3} with support count of 2;
{1, 2, 5} with support count of 2.

3

Notice that once we have created a list of all itemsets that have the required
support, we can deduce the rules that meet the desired confidence ratio by
examining all subsets of each itemset in the list. Since any subset of a set
must occur at least as frequently as the set, each subset will also be in the
list. It is then straightforward to compute the confidence as the ratio of the
support for the itemset to the support for each subset of the itemset. We
retain the corresponding association rule only if it exceeds the desired cut-
off value for confidence. For example, from the itemset {1,2,5} we get the
following association rules:

{1, 2} => {5} with confidence = support count of {1, 2, 5} divided by

support count of {1, 2} = 2/4 = 50%;

{1, 5} => {2} with confidence = support count of {1, 2, 5} divided by

support count of {1, 5} = 2/2 = 100%;

{2, 5} => {1} with confidence = support count of {1, 2, 5} divided by

support count of {2, 5} = 2/2 = 100%;

{1} => {2, 5} with confidence = support count of {1, 2, 5} divided by
support count of {1} = 2/6 = 33%;
{2} => {1,5} with confidence = support count of {1, 2, 5} divided by
support count of {2} = 2/7 = 29%;
{5} => {1,2} with confidence = support count of {1, 2, 5} divided by
support count of {5} = 2/2 = 100%.

If the desired confidence cut-off was 70%, we would report only the second,
third, and last rules.

We can see from the above that the problem of generating all association
rules that meet stipulated support and confidence requirements can be
decomposed into two stages. First we find all itemsets with the requisite
support (these are called frequent or ‘large’ itemsets) ; and then we generate,
from each itemset so identified, association rules that meet the confidence
requirement. For most association analysis data, the computational challenge
is the first stage.

The Apriori Algorithm Although several algorithms have been proposed for
generating association rules, the classic algorithm is the Apriori algorithm of
Agrawal and Srikant. The key idea of the algorithm is to begin by generating
frequent itemsets with just one item (1-itemsets) and to recursively generate
frequent itemsets with 2 items, then frequent 3-itemsets and so on until we

4

have generated frequent itemsets of all sizes. Without loss of generality we
will denote items by unique, consecutive (positive) integers and that the
items in each itemset are in increasing order of this item number. The
example above illustrates this notation. When we refer to an item in a
computation we actually mean this item number.

It is easy to generate frequent 1-itemsets. All we need to do is to count, for
each item, how many transactions in the database include the item. These
transaction counts are the supports for the 1-itemsets. We drop 1-itemsets
that have support below the desired cut-off value to create a list of the
frequent 1-itemsets.

The general procedure to obtain k-itemsets from (k-1)-itemsets for k = 2, 3,
… , is as follows. Create a candidate list of k-itemsets by performing a join
operation on pairs of (k-1)-itemsets in the list. The join is over the first (k-2)
items, i.e. a pair is combined if the first (k-2) items are the same in both
members of the pair. If this condition is met the join of pair is a k-itemset
that contains the common first (k-2) items and the two items that are not in
common, one from each member of the pair. All frequent k-itemsets must be
in this candidate list since every subset of size (k-1) of a frequent k-itemset
must be a frequent (k-1) itemset. However, some k-itemsets in the candidate
list may not be frequent k-itemsets. We need to delete these to create the list
of frequent k-itemsets. To identify the k-itemsets that are not frequent we
examine all subsets of size (k-1) of each candidate k-itemset. Notice that we
need examine only (k-1)-itemsets that contain the last two items of the
candidate k-itemset (Why?). If any one of these subsets of size (k-1) is not
present in the frequent (k-1) itemset list, we know that the candidate k­
itemset cannot be a frequent itemset. We delete such k-itemsets from the
candidate list. Proceeding in this manner with every itemset in the candidate
list we are assured that at the end of our scan the k-itemset candidate list will
have been pruned to become the list of frequent k-itemsets. We repeat the
procedure recursively by incrementing k. We stop only when the candidate
list is empty.

A critical aspect for efficiency in this algorithm is the data structure of the
candidate and frequent itemset lists. Hash trees were used in the original
version but there have been several proposals to improve on this structure.

There are also other algorithms that can be faster than the Apriori algorithm
in practice.

5

1
2

3

4
5

6

7
8

9

10

Let us examine the output from an application of this algorithm to a small
randomly generated database of 50 records shown in Example 2.

Example 2

Tr# Items

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

8
3 4 8

8

3 9
9

1 8

6 9
3 5 7 9

8

8
1 7 9

1 4 5 8 9

5 7 9
6 7 8

3 7 9

1 4 9
6 7 8

8

8
9

2 5 6 8

4 6 9
4 9

8 9

6 8

1 6 8

5 8

4 8 9
9

8

1 5 8
3 6 9

7 9

7 8 9
3 4 6 8

1 4 8

4 7 8
8 9

4 5 7 9

2 8 9

6

1
2
3
4
5
6
7
8
9

41 2 5 9

42 1 2 7 9

43 5 8

44 1 7 8

45 8

46 2 7 9

47 4 6 9

48 9

49 9

50 6 7 8

Association Rules Output
Input

Data: A5:E54

Min.

Support

: 2 = 4%

Min.

Conf.

%: 70

Confidence Lift
Rule # Confidence Antecedent Consequent Support Support Support If pr(c|a) = pr(c) Ratio

% %
80

(a)
2 =>

(c)
9

(a)
5

(c)
27

(a U c)
4 54

(conf/prev.col.)
1.5

100 5, 7 => 9 3 27 3 54 1.9
100 6, 7 => 8 3 29 3 58 1.7
100 1, 5 => 8 2 29 2 58 1.7
100 2, 7 => 9 2 27 2 54 1.9
100 3, 8 => 4 2 11 2 22 4.5
100 3, 4 => 8 2 29 2 58 1.7
100 3, 7 => 9 2 27 2 54 1.9
100 4, 5 => 9 2 27 2 54 1.9

A high value of confidence suggests a strong association rule. However this
can be deceptive because if the antecedent and/or the consequent have a high
support, we can have a high value for confidence even when they are
independent! A better measure to judge the strength of an association rule is
to compare the confidence of the rule with the benchmark value where we
assume that the occurrence of the consequent itemset in a transaction is
independent of the occurance of the antecedant for each rule. We can
compute this benchmark from the frequency counts of the frequent itemsets.
The benchmark confidence value for a rule is the support for the consequent
divided by the number of transactions in the database. This enables us to
compute the lift ratio of a rule. The lift ratio is the confidence of the rule
divided by the confidence assuming independence of consequent from
antecedent. A lift ratio greater than 1.0 suggests that there is some usefulness

7

to the rule. The larger the lift ratio, the greater is the strength of the
association. (What does a ratio less than 1.00 mean? Can it be useful to
know such rules?)

In our example the lift ratios highlight Rule 6 as most interesting in that it
suggests purchase of item 4 is almost 5 times as likely when items 3 and 8
are purchased than if item 4 was not associated with the itemset {3,8}.

Shortcomings

Association rules have not been as useful in practice as one would have
hoped. One major shortcoming is that the support confidence framework
often generates too many rules. Another is that often most of them are
obvious. Insights such as the celebrated “on Friday evenings diapers and
beers are bought together” story are not as common as might be expected.
There is need for skill in association analysis and it seems likely, as some
researchers have argued, that a more rigorous statistical discipline to cope
with rule proliferation would be beneficial.

Extensions

The general approach of association analysis utilizing support and
confidence concepts has been extended to sequences where one is looking
for patterns that evolve in time. The computation problems are even more
formidable, but there have been several successful applications.

8

