
1

Branch and Bound

Amit

Hello friends, Mita and I
are here again to
introduce to you a tutorial
on branch and bound.

Did you know that beavers
like to use branches to
bound water behind
dams?

Mita

Yes, we sure do. Some people say that
we beavers are nature's engineers.

But Amit, this branch and bound refers
to something else, namely a clever way
of enumerating all solutions of an
integer program, to solve it more
efficiently.

Written by Zach Leung with help
from the 15.053/8 team of cartoon
characters. April, 2012

I still don't really understand how to use the Branch and
Bound algorithm. Ella, do you mind going through it once
again for me? Suppose I were a contestant on the famous
TV game show “I Heart Trading For Profit” (IHTFP) that
Nooz was on recently (exclusively on the Fox TV
network). How would I use Branch and Bound in order to
solve the problem of what are the best items to pick to
maximize my utility?

Of course we can
help, that's what
friends are for.

da da da da da, du du
du du du du du, Well
you came in loving
me…

maximize 15x1 + 12x2 + 4x3 + 2x4

subject to 8x1 + 5x2 + 3x3 + 2x4 ≤ 10

 xk binary for k = 1 to 4

Note: This example differs from
the one in the lecture. That is why
the trees are not the same.

Ella, what are
you singing? I
don’t recognize
the song…

Oh the young ones, that was a song before your time…
Anyhow, our starting point is the enumeration tree,
which is a method to enumerate all possible solutions of
an integer program.
At each node, we branch on an integer variable,
where on each branch, the integer variable is restricted
to take certain values.

x2 = 0

x2 = 0

x2 = 1

x2 = 1

x1 = 1

x1 = 0

If we are able to write
down all possible solutions
in the enumeration tree,
then why don't we
compute the objective for
each solution, and simply
pick the best one? This is a
method so simple that
even a cartoon turkey
could think of it!

Tom, you are right that the method of
complete enumeration would work. But
as the problems get bigger, complete
enumeration would take too long
because the number of possible solutions
explodes exponentially!

Did I hear that a meteorite is about to
crash into earth and cause an exponential
explosion? I had better stay safe in my
meteorite shelter!

The enumeration tree
explodes exponentially?
That sounds rather
dangerous. What should we
do to prevent this
dangerous explosion?

The trick is to use the LP relaxation to
bound the optimal integer solutions
in a subtree of the enumeration tree,
which allows us to eliminate many (in
some cases even 99.999999999%) of the
enumeration tree.

It's too late for my dinosaur friends,
99.9999999% of us have been eliminated.
Sigh.

While there remain active nodes

Select an active node j and mark it as inactive

Let x(j) and zLP(j) denote the optimal solution and

objective of the LP relaxation of Problem(j).

Case 1: If z* ≥ zLP(j) then

Prune node j

Case 2: If z* < zLP(j) and x(j) is feasible for IP then

 Replace the incumbent by x(j)

 Prune node j

Case 3: If z* < zLP(j) and x(j) is not feasible for IP then

 Mark the direct descendants of node j as active

End While

Essential Branch and Bound

I will summarize in one slide the branch and bound algorithm!

To start off, obtain somehow (e.g. by extortion, creativity, or magic)

a feasible solution x*. At each iteration of the algorithm, we will refer

to x* as the incumbent solution and its objective value z* as the

incumbent objective. Here, incumbent means “best so far.”

Next, mark the root node as active.

Let’s get started! Big money,
big money, *spin*

In your case, Tom, we shall
start with the incumbent
solution x* = (0,0,0,0) and
incumbent objective z* = 0.

That doesn’t seem like a very good
solution. I would not be happy with this
solution at all, but go on. I’m sure things
will only get better from here.

Unfortunately, my dinosaur friends are all
getting exactly zero.

1

Incumbent
x* = (0, 0, 0, 0)

z* = 0

Let’s start at the very beginning, a very
good place to start. Our starting point is
the single node containing all feasible
solutions.

1

xLP(1) = (5/8, 1 , 0, 0)
zLP(1) = 21 3/8

We solve the LP relaxation of problem 1.

Since we are in case 3, we branch on the
node and mark its children as active.

Incumbent
x* = (0, 0, 0, 0)

z* = 0

2 3

x1 = 1 x1 = 0

1

2 3 2

xLP(2) = (0, 1, 1, 1)
zLP(2) = 18

Incumbent
x* = (0,1,1,1)

z* = 18

Incumbent
x* = (0, 0, 0, 0)

z* = 0

We solve the LP relaxation of problem 2.

Since we are in case 2, we replace the
incumbent with this better solution, and
prune node 2.

x1 = 1 x1 = 0

1

2 3 2

Incumbent
x* = (0, 1, 1, 1)

z* = 18

xLP(3) = (5/8, 1, 0, 0)
zLP(3) = 21 3/8

We solve the LP relaxation of problem 3.

Since we are in case 3, we branch on the
node and mark its children as active.

x1 = 1 x1 = 0

4 5

x2 = 1 x2 = 0

1

2 3

4 5

xLP(4) = (1, 0, 2/3, 0)
zLP(4) = 17 2/3

2

Incumbent
x* = (0, 1, 1, 1)

z* = 18

We solve the LP relaxation of problem 4.

Since we are in case 1, we prune node 4.

4

x2 = 1 x2 = 0

x1 = 1 x1 = 0

1

2 3

4 5

xLP(5) = infeasible
zLP(5) = infeasible

2

Incumbent
x* = (0, 1, 1, 1)

z* = 18

4

We solve the LP relaxation of problem 5.

Since we are in case 1, we prune node 5.

5

x1 = 1 x1 = 0

x2 = 1 x2 = 0

1

2 3

4 5

2

Incumbent
x* = (0, 1, 1, 1)

z* = 18

4 5

You’re most welcome. That’s what friends
are for… do do do do do

And we’re done! Yahoo! Google! Bing!
Thank you Ella.

x1 = 1 x1 = 0

x2 = 1 x2 = 0

15 Amit

Although branch and bound looks
difficult at first, just like building dams,
it gets easier with practice. To share a
motivating example from my own
experience: When I was younger, I
thought building dams was dam hard,
but after working dam hard at it, I now
find it to be dam easy!

Mita

That’s all for branch
and bound. Bye!

MIT OpenCourseWare
http://ocw.mit.edu

15.053 Optimization Methods in Management Science
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

