IP Formulation guide (abbreviated) 15.053 and 15.058 Spring 2013

- For use on the quiz on April 4, 2013 and for the midterm on April 18, 2013.
- DO NOT WRITE ON THIS DOCUMENT
- This document will be provided with the quiz and midterm.
- Hand in this guide at the end of the quiz and midterm.

1. Packing, covering, and partitioning problems.

There is a collection of sets S_1 , ..., S_n with $S_i \subseteq \{1, 2, 3, ..., m\}$ for i = 1 to n. Associated with each set S_i is a cost c_i .

Let
$$a_{ij} = \begin{cases} 1 & \text{if } i \in S_j \\ 0 & \text{otherwise.} \end{cases}$$
 Let $x_j = \begin{cases} 1 & \text{if set } S_j \text{ is selected} \\ 0 & \text{otherwise.} \end{cases}$

The set packing problem is the problem of selecting the maximum cost subcollection of sets, no two of which share a common element. The set covering problem is the problem of selecting the minimum cost subcollection of sets, so that each element $i \in \{1, 2, ..., m\}$ is in one of the sets.

$$\begin{aligned} & \text{Maximize} & & \sum_{j=1}^n c_j x_j \\ & \text{subject to} & & \sum_{j=1}^n a_{ij} x_j \leq 1 & \text{for each } i \in \{1,...,m\} \\ & & & x_j \in \{0,1\} & \text{for each } j \in \{1,...,n\}. \end{aligned} & & \textit{Set Packing Problem} \\ & & & x_j \in \{0,1\} & \text{for each } i \in \{1,...,m\}. \end{aligned}$$

$$& \text{Set Covering Problem} \\ & & & x_j \in \{0,1\} & \text{for each } j \in \{1,...,m\}. \end{aligned}$$

Section 2. Modular arithmetic.

 $x \equiv a \pmod{b}$ is the same as: there is an integer q such that a + qb = x. integer.

Constraint.	IP Constraint
x is odd.	$x - 2w = 1$, $w \ge 0$, w is integral.
<i>x</i> is even.	$x - 2w = 0$, $w \ge 0$, w is integral.
$x \equiv a \pmod{b}$	$x - bw = a, w \ge 0, w$ is integral.

Table 1. Modular arithmetic formulations.

3. Restricting a variable to take on one of several values.

$x \in \{4, 8, 13\}$	$x = 4 w_1 + 8 w_2 + 13 w_3;$
	$w_1 + w_2 + w_3 = 1$
	$w_i \in \{0, 1\}$ for $i = 1$ to 3.
	$x = 4 w_1 + 8 w_2 + 13 w_3;$
$x \in \{0, 4, 8, 13\}$	$w_1 + w_2 + w_3 \le 1$
	$w_i \in \{0, 1\} \text{ for } i = 1 \text{ to } 3.$

Logical Constraints.	IP Constraint
If item i is selected, then item j is also selected.	$x_i - x_j \le 0$
Either item i is selected or item j is selected, but not both.	$x_i + x_j = 1$
Item <i>i</i> is selected or item <i>j</i> is selected or both.	$x_i + x_j \ge 1$
If item i is selected, then item j is not selected.	$x_i + x_j \le 1$
If item <i>i</i> is not selected, then item <i>j</i> is not selected.	$-x_i + x_j \le 0$
At most one of items i , j , and k are selected.	$x_i + x_j + x_k \le 1$
Exactly one of items <i>i</i> , <i>j</i> , and <i>k</i> are selected.	$x_i + x_j + x_k = 1$
At least one of items <i>i</i> , <i>j</i> and <i>k</i> are selected.	$x_i + x_j + x_k \ge 1$

Table 2. Simple constraints involving two or three binary variables.

4. Logical constraints and the big M method.

In the following, we assume that all integer variables are bounded from above. We also assume that all variables are required to be integer valued. We let M denote some very large integer.

Logical Constraints using big M method.	IP Constraint
$x_1 + 4x_2 - 2x_4 \ge 7$ or $3x_1 - 5x_2 \le 12$	$x_1 + 4x_2 - 2x_4 \ge 7 - M w$ $3x_1 - 5x_2 \le 12 + M(1-w)$ $w \in \{0,1\}$
If $x_1 + 4x_2 - 2x_4 \ge 7$ then $3x_1 - 5x_2 \le 12$	$x_1 + 4x_2 - 2x_4 \le 6 + M w$ $3x_1 - 5x_2 \le 12 + M(1-w)$ $w \in \{0,1\}$
At least two of the following	$x_1 + 4x_2 + 2x_4 \ge 7 - M(1-w_1)$
constraints are satisfied:	$3x_1 - 5x_2 \leq 12 + M(1-w_2)$
$x_1 + 4x_2 + 2x_4 \ge 7;$	$2x_2 + x_3 \qquad \geq 6 -M(1-w_3)$
$3x_1 - 5x_2 \leq 12;$	$w_1 + w_2 + w_3 \geq 2$
$2x_2 + x_3 \geq 6;$	$w_i \in \{0,1\} \text{ for } i = 1 \text{ to } 3.$
At most one of the following	This is equivalent to: at least two of the
constraints are satisfied:	following constraints are satisfied.
$x_1 + 4x_2 + 2x_4 \ge 7;$	$x_1 + 4x_2 + 2x_4 \le 6$;
$3x_1 - 5x_2 \leq 12;$	$3x_1 - 5x_2 \qquad \geq 13;$
$2x_2 + x_3 \geq 6;$	$2x_2 + x_3 \leq 5;$

5. Fixed costs

Here we consider an integer program in which there are fixed costs on variables. For example, consider the following integer program:

Formulation using fixed costs

Maximize
$$f(x_1) + f_2(x_2) + f_3(x_3)$$
 subject to
$$2x_1 + 4x_2 + 5x_3 \le 100$$

$$x_1 + x_2 + x_3 \le 30$$

$$10x_1 + 5x_2 + 2x_3 \le 204$$

$$x_i \ge 0 \text{ and integer for } i = 1 \text{ to } 3.$$

IP Formulation

Maximize
$$52x_1 - 500w_1 + 30x_2 - 400w_2 + 20x_3 - 300w_3$$
 subject to
$$2x_1 + 4x_2 + 5x_3 \le 100$$

$$x_1 + x_2 + x_3 \le 30$$

$$10x_1 + 5x_2 + 2x_3 \le 204$$

$$x_i \le Mw_i \quad \text{for } i = 1 \text{ to } 3$$

$$x_i \ge 0 \text{ and integer for } i = 1 \text{ to } 3.$$

where
$$f_1(x_1) = \begin{cases} 52x_1 - 500 & \text{if } x_1 \ge 1 \\ 0 & \text{if } x_1 = 0 \end{cases}$$
, $f_2(x_2) = \begin{cases} 30x_2 - 400 & \text{if } x_2 \ge 1 \\ 0 & \text{if } x_2 = 0 \end{cases}$, and $f_3(x_3) = \begin{cases} 20x_3 - 300 & \text{if } x_3 \ge 1 \\ 0 & \text{if } x_3 = 0 \end{cases}$.

Section 6. Piecewise linear functions.

Integer programming can be used to model functions that are piecewise linear. For example, consider the following function.

$$y = \begin{cases} 2x & \text{if } 0 \le x \le 3\\ 9 - x & \text{if } 4 \le x \le 7\\ -5 + x & \text{if } 8 \le x \le 9. \end{cases}$$

One can model *y* in several different ways. Here is one of them. We first define two new variables for every piece of the curve.

Definitions of the variables

$$w_1 = \begin{cases} 1 & \text{if } 0 \le x \le 3 \\ 0 & \text{otherwise.} \end{cases} \qquad x_1 = \begin{cases} x & \text{if } 0 \le x \le 3 \\ 0 & \text{otherwise.} \end{cases}$$

$$w_2 = \begin{cases} 1 & \text{if } 4 \le x \le 7 \\ 0 & \text{otherwise.} \end{cases} \qquad x_2 = \begin{cases} x & \text{if } 4 \le x \le 7 \\ 0 & \text{otherwise.} \end{cases}$$

$$w_3 = \begin{cases} 1 & \text{if } 8 \le x \le 9 \\ 0 & \text{otherwise.} \end{cases} \qquad x_3 = \begin{cases} x & \text{if } 8 \le x \le 9 \\ 0 & \text{otherwise.} \end{cases}$$

IP formulation

$$0 \le x_1 \le 3w_1$$

$$4w_2 \le x_2 \le 7w_2$$

$$8w_3 \le x_3 \le 9w_3$$

$$w_1 + w_2 + w_3 = 1$$

$$x = x_1 + x_2 + x_3$$

$$w_i \in \{0, 1\} \text{ for } i = 1 \text{ to } 3.$$

15.053 Optimization Methods in Management Science Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.