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Problem 1 

Suppose branch and bound is being applied to a 0–1 integer program in which we are maximizing. 
By node 11 the first three variables have been fixed. An incumbent has already been found (in 
another part of the tree) and has value 15. Furthermore, x4 has been chosen to be the next 
variable to branch on. This situation is illustrated in the following fragment of the branch and 
bound tree: 
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Figure 1: A fragment of the branch and bound tree for Problem 1.
 

The LP relaxation solved at node 11 (which has x4 and x5 as free variables) was:
 

max 18x4 + ax5 + 10 

s.t. 8x4 + 10x5 ≤ 5, 

0 ≤ x4 ≤ 1, 

0 ≤ x5 ≤ 1, 

(Hint: For the following questions, the LP relaxation essentially becomes a one variable 
problem that can be solved by inspection.) 

Part A.1 

Suppose x4 is set to 1. Does node 12 get pruned (fathomed)? Justify your answer. 

Solution. Yes, node 12 gets fathomed. If x4 is set to 1, then the LP relaxation becomes: 



� 

max	 ax5 + 28 

s.t.	 10x5 ≤ −3, 

0 ≤ x5 ≤ 1, 

The relaxation is infeasible because of the first constraint, so node 12 gets fathomed. 

Part B.1 

Suppose x4 is set to 0 and parameter a = 12. Does node 13 get pruned (fathomed)? Justify 
your answer. 

Solution. No, node 13 does not get fathomed. If x4 = 0 and a = 12, then the LP relaxation 
becomes: 

max	 12x5 + 10 

s.t.	 10x5 ≤ 5, 

0 ≤ x5 ≤ 1, 

The optimal solution to this relaxation is x5 = 1/2, with an objective value of 16. Because 
the solution is fractional and has a value better (higher) than the incumbent, the node wont 
be fathomed (since its possible that a better solution could be found in the subtree). 

Part C.1 

Suppose x4 is set to 0 and parameter a = 8. Does node 13 get pruned (fathomed)? Justify your 
answer. 

Solution. Yes, node 13 gets fathomed. If x4 = 0 and a = 8, then the LP relaxation 
becomes: 

max	 8x5 + 10 

s.t.	 10x5 ≤ 5, 

0 ≤ x5 ≤ 1, 

The optimal solution to this relaxation is x5 = 1/2 with an objective value of 14. Since this 
solution is not better than the incumbent, node 13 gets fathomed. 

Problem 2 

Consider the knapsack problem with the following decision variables for i = 1 to 4: 

1 if item i is selected; 
xi = 

0 otherwise. 

The knapsack problem is formulated as follows:
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max 19x1 + 23x2 + 30x3 + 40x4 

s.t.	 6x1 + 8x2 + 10x3 + 13x4 ≤ 25, (1) 

xi ∈ {0, 1}, for i = 1, . . . , 4. 

Apply the branch-and-bound algorithm to solve the problem (notice that the the LP relax­
ation of a knapsack problem can be easily solved by selecting the items. 

Solution. Let’s first review the branch and bound algorithm: At each iteration, we select 
an active node j and make it inactive. Suppose that LP(j) represents the integer program 
corresponding to node j, in which the binary variables are relaxed to be fractional. Let x(j) 
and ZLP (j) be the optimal solution and the optimal value of LP. There are three cases: 

Case: 1 If ZLP (j) ≤ Z∗, the node j gets pruned;
 

Case: 2 If ZLP (j) > Z∗, and x(j) is integral, then update the incumbent solution by setting
 
∗Z∗ := ZLP (j) and x := x(j); In addition, node j gets pruned, 

Case: 3 If ZLP (j) > Z∗ and x(j) is not integral, then make the childeren of node j as active; 

We now apply this algorithm to solve Problem (1)). We first need an initial incumbent 
∗	 ∗solution. We set x = (0, 0, 0, 0) with value z = 0 as the initial incumbent solution and then 

start with node 1, which represents problem IP(1) (notice that IP(1) is the original knapsack 
problem, that is, Problem (1)). Remember that this node is considered as an active node. 

We select node 1 and then solve LP(1). Notice that LP(1) is IP(1) with relating the binary 
variable to be fractional. More precisely, LP(1) is as follows: 

max 19x1 + 23x2 + 30x3 + 40x4 

s.t.	 6x1 + 8x2 + 10x3 + 13x4 ≤ 25, (LP(1)) 

0 ≤ xi ≤ 1, for i = 1, . . . , 4. 

We next require to compute an optimal solution for LP(1). There is a simple way to solve 
LP(1) since there is a single constraint. In fcat, we want to select as much as possible of the 
items with the greatest profit per weight ratio. In Table 1, the profit per weight ratio of each 
item is given. 

Table 1: Profit per weight ratio of each item for problem 2 

item 1 2 3 4 
Profit(P) 19 23 30 40 
Weight(W) 6 8 10 13 

P/W 3.16667 2.875 3 3.0769 

Therefore, we first select item 4 since it has the most profit per weight ratio. The knapsack 
still have a capacity of 12, and we then select item 1. After selecting item 1 and 4, the 
knapsack still has a capacity of 6. So we can select 0.6 fraction of item 3. This gives an 
optimal solution for LP(1) as x(1) = (1, 0, 0.6, 1) with value ZLP (1) = 75.75. At this node, 
Case 3 occurs, so we make the children of node 1 (i.e., nodes 2 and 3) as active. 
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We next choose node 2 and make it inactive. We then solve LP(2). Notice that at node 2, 
the value of the firs binary variable is set to be zero, so LP(2) is as follows: 

max 23x2 + 30x3 + 40x4 

s.t.	 8x2 + 10x3 + 13x4 ≤ 25, (LP(2)) 

0 ≤ xi ≤ 1, for i = 2, . . . , 4. 

The optimal solution of LP(2) is x(2) = (0, 2/8, 1, 1) with value ZLP (2) = 75. Notice that 
Z∗ < ZLP (2) and x(2) is not integral, so we make the children of node 2 (nodes 4 and 5) as 
active. 

The above procedure is repeated until there is no active node, at which point the incumbent 
solution will be optimal. Figure 2 gives an overview of the branch and bound tree for solving 
Problem (1). As shown in the tree, the nodes 15,17,19,21 get pruned since the corresponding 
linear program at these nodes are all infeasible. In addition, we get x(4) = (0, 0, 11) with 
value ZLP (4) = 70 at node 4, so node gets pruned and the incumbent solution is updated. 
Later on, we get an improved incumbent solution at node 20 since we have x(20) = (1, 1, 1, 0) 
with value ZLP (20) = 73. This is the optimal solution. 
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Figure 2: Branch and Bound Tree for Problem 1.
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