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Problem 1 

This problem verifies your understanding of the geometry of Linear Programming. The ques­
tions are not trivial, therefore consider carefully your answer. 

Consider the feasible region depicted in Figure 2 (note that it extends indefinitely towards 
the upper right part of the graph). Here is a proposition that is valid for all linear programs 
and will be useful for solving this problem. For any point p, let c(p) be the cost of point p. 
Proposition. If point p" is on the line segment joining points p and p"" , then: 

• c(p" ) ≥ min{c(p), c(p"" )}, and 

• c(p" ) ≤ max{c(p), c(p"" )}. 

For example, in Figure 2 we have c(E) ≥ min{c(D), c(F )}, and c(E) ≤ max{c(D), c(F )}. 
"This follows from simple linear algebra: if p is on the line segment between p and p"" , then 
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Figure 1: Feasible region discussed in Problem 3.
 



" "" p = λp + (1 − λ)p for some 0 ≤ λ ≤ 1. The cost of a point is a linear fuction and therefore 
T T " T "" can be expressed as c p. Then it is straightforward to verify that c p = λcTp + (1 − λ)c p ≥
 

λ min{c(p), c(p "" )} + (1 − λ) min{c(p), c(p "" )} = min{c(p), c(p "" )}. The proof for the second state­
ment is similar.
 
Questions. Answer the set of True/False questions below.
 

(a) F cannot be a unique optimum of the problem. 

Solution. False. 

(b) If C is an optimal solution, D is also optimal. 

Solution. True. 

(c) If A and B are optimal, the problem is unbounded. 

Solution. False. 

(d) If B and F are optimal, G is not optimal. 

Solution. False. 

(e) If no point among B, D and F is optimal, the problem is unbounded. 

Solution. True. 

(f) There exists an objective function such that the problem is infeasible. 

Solution. False. 

(g) If B, D and F are not optimal, the problem is infeasible. 

Solution. False. 

(h) D and F could simultaneously be the only optima of the problem. 

Solution. False. 

(i) If D and G are optimal, there is an infinite number of feasible solutions. 

Solution. True. 

(j) If the problem has a finite optimal objective value, G could be an optimal solution. 

Solution. True. 

(k) There exists an objective function such that H is optimal but A is not. 

Solution. False. 

(l) If H is an optimal solution, there are infinitely many optimal solutions and the limit of the 
objective function values is plus or minus infinity. 

Solution. False. 
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Problem 2 

Consider the feasible region defined by the following constraints: 

x1 − x2 ≥ −1.5 
x1 − 2x2 ≤ 2 
4x1 + x2 ≥ 2 

x1, x2 ≥ 0. 

⎫ ⎪⎪⎬ ⎪⎪⎭
 
(LP2)
 

(a) Draw the feasible region of (LP2).	 Does this LP have an optimal solution for all possible 
objective functions? Why? 

Solution. The feasible region is sketched in Figure 2. Because the feasible region 
is unbounded, this problem does not have an optimal solution for all possible objective 
functions. 
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Figure 2: Feasible region for Part 2.A. 

(b) Give an example of: 

•	 An objective function such that both (0, 0) and (0, 1.5) are optimal (in minimization 
form) 

•	 An objective function such that only the point (0, 1.5) is optimal (in minimization 
form). 

•	 An objective function such that (LP2) is unbounded (in maximization form). 

If such an example does not exist, explain why. 

Solution. 

•	 In order for (0, 0) and (0, 1.5) to be optimal, the whole segment between them has 
to be optimal. Hence the objective function has level lines parallel to the x2 axis. In 
two dimensions, the only objective function with this property is: min x1. 
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•	 The point (0, 1.5) is the unique optimum for objective functions with slope between 
the vertical axis x2 and the constraint x1 − x2 ≥ −1.5. Hence the slope should be 
between 1 and +∞. All functions of the form min x1 − βx2 with β ∈ (0, 1) have this 
property (note that the values β = 0 and β = 1 are excluded because (0, 1.5) would 
be optimal but not unique). 

•	 We are looking for objective functions that increase when moving towards the top 
right part of the graph. All functions of the form max αx1 + βx2 with α, β ≥ 0 have 
this property. There are other functions (with one negative coefficient) that yield an 
unbounded objective function value, but here we are just required to give an example. 

Problem 3 

Consider the following LP: 

max 10x1 + 8x2 − 3x3 

s.t.: 2x1 + 4x2 − 0.5x3 ≤ 6 
−2x1 + 6x2 − 4.5x3 ≤ 4 

x1, x2 ≥ 0 
x3 free. 

⎫ ⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎭
 

(LP3)
 

(a) Write (LP3) in canonical form. If you have to introduce extra variables, explain what they 
stand for. Compute the initial basic feasible solution and write its value for all of the 
problem’s variables (regardless of whether they are present in the original formulation or 
introduced for the canonical form). 

Solution. To put (LP3) into canonical form, we first have to substitute x3 with two 
− 
3 that represents


+nonnegative variables: x3 that represents the positive part of x3, and x 
+its negative part, i.e. x3 = x − x3 

− 
3 . This yields:
 ⎫ ⎪⎪⎬
 

− 
3 

+ max 10x1 + 8x2 − 3x3 + 3x 
− 
3 

+2x1 + 4x2 − 0.5x ≤
+ 0.5x
 6
s.t.:
 3 
− 
3 

+−2x1 + 6x2 − 4.5x ≤
+ 4.5x
 4
 ⎪⎪⎭
3 
−+ ≥ 0.
x1, x2, x3 , x3 

Then we introduce nonnegative slack variables to transform the constraints into equality 
constraints: s1 and s2 represent the difference between the rhs and the lhs of the first, 
respectively second, constraint. We obtain the canonical form: ⎫ ⎪⎪⎬
 

− 
3 

+ max 10x1 + 8x2 − 3x3 + 3x 
−+2x1 + 4x2 − 0.5x3 + 0.5x 6
s.t.:
 + s1 = 3 
− 
3 

+−2x1 + 6x2 − 4.5x3 + 4.5x + s2 = 4 ⎪⎪⎭
+ − x1, x2, x3 , x3 , s1, s2 ≥ 0.
 

The corresponding basic feasible solution is s1 = 6, s2 = 4. This implies that all the 
−+remaining variables x1, x2, x have value 0.
3 , x3 

(b) Write the initial simplex tableau and perform two iterations of the simplex algorithm.	 Is 
the basic solution after two iterations optimal? Why? 

Solution. Initial tableau: 
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Basic x1 x2 x + 
3 x − 

3 s1 s2 Rhs 
(−z) 10 8 -3 3 0 
s1 2 4 -0.5 0.5 1 6 
s2 -2 6 -4.5 4.5 1 4 

Pivot column: x1, pivot row: 1. First iteration: 

Basic x1 x2 x + 
3 x − 

3 s1 s2 Rhs 
(−z) -12 -0.5 0.5 -5 -30 
x1 1 2 -0.25 0.25 0.5 3 
s2 10 -5 5 1 1 10 

+Pivot column: x3 , pivot row: 2. Second iteration: 

Basic x1 x2 x + 
3 x − 

3 s1 s2 Rhs 
(−z) -13 -5.1 -0.1 -31 
x1 1 1.5 0.45 -0.05 2.5 
x − 
3 2 -1 1 0.2 0.2 2 

This tableau is optimal. 

(c) In (LP3), replace the first constraint 2x1 + 4x2 − 0.5x3 ≤ 6 with −2x1 + 4x2 − 0.5x3 ≤ 6. 
Write the initial simplex tableau (note that only one coefficient changes with respect to the 
first tableau of Part 2.B). Perform one iteration of the simplex algorithm. What happens 
in this case? 

Solution. The amended initial tableau is: 

Basic x1 x2 x + 
3 x − 

3 s1 s2 Rhs 
(−z) 10 8 -3 3 0 
s1 -2 4 -0.5 0.5 1 6 
s2 -2 6 -4.5 4.5 1 4 

Column x1 has a positive reduced cost and all of the coefficients are negative. Therefore 
the problem is unbounded: we can increase x1 as much as we want to improve the objective 
function value, while still staying feasible. 

Problem 4 

Here we review the Simplex Algorithm in more detail, without an Excel spreadsheet to provide 
guidance. Be careful when carrying out the calculations. 

Consider the following linear program: 

max 2x1 + 4x2 

s.t.: 
0.5x1 − 5x2 ≤ 12 

x1 + 2x2 ≥ −2 
x2 + x3 ≥ 4 

x1, x2, x3 ≥ 0. 

⎫ ⎪⎪⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎪⎪⎭
 

5
 



(a) Write the initial simplex tableau.	 To do so, you will have to transform the problem into 
canonical form. What is the initial basic feasible solution? (Hint: at least one of the original 
variables is basic) 

Solution. We have to introduce a slack variable s1 in the first constraint, and surplus 
variables s2, s3 in the second and third constraint. We also have to flip the second con­
straint, multiplying through by −1 to obtain a nonnegative rhs value. The problem in 
standard form is: 

max 2x1 + 4x2 

s.t.: 
0.5x1 − 5x2 + s1 = 12 
−x1 − 2x2 + s2 = 2 

x2 + x3 − s3 = 4 
x1, x2, x3, s1, s2, s3 ≥ 0. 

We put this into tableau form and we obtain: 

⎫⎪⎪⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎪⎪⎭
 

Basic x1 x2 x3 s1 s2 s3 Rhs 
(−z) 2 4 0 
s1 0.5 -5 1 12 
s2 -1 -2 1 2 
x3 1 1 -1 4 

The initial basic feasible solution is s1 = 12, s2 = 2, x3 = 4. The remaining variables have 
value zero. 

(b) Perform one iteration of the simplex algorithm, by pivoting in the variable with the largest 
reduced cost. Write down the candidate variables for pivoting out, and the corresponding 
value of the ratio test. Finally, report the simplex tableau after the first iteration. 

Solution. We pivot in x2 because it has the largest reduced cost (4 against 2 of x1; 
x3 has zero reduced cost). The only candidate for pivoting out is x3 (pivot on the third 
row) because it is the only positive coefficient in the pivot column. The ratio test yields 
the value 4/1 = 4. The tableau after the first iteration is: 

Basic x1 x2 x3 s1 s2 s3 Rhs 
(−z) 2 -4 4 -16 
s1 0.5 5 1 -5 32 
s2 -1 2 1 -2 10 
x2 1 1 -1 4 

(c) Would the simplex algorithm terminate after the first iteration? Why? Can you guess the 
optimal objective function value? 

Solution. The simplex algorithm terminates after the first iteration detecting an un­
bounded objective function value: the column corresponding to s3 has a positive reduced 
cost, but its coefficient in all rows are nonpositive. This means that we can increase s3 

as much as possible and increase the objective function value while staying within the 
feasible region. It follows that there is no optimal objective function value (we also accept 
+∞ as the answer for the optimal objective function value). 
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