15.053 February 14, 2013

e Review of Guassian elimination for solving systems
of equations

e Introduction to the Simplex Algorithm
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Quotes for today

“Any impatient student of mathematics or
science or engineering who is irked by having
algebraic symbolism thrust upon him should try
to get along without it for a week.”

-- Eric Temple Bell

“To become aware of the possibility of the search is
to be onto something.”

-- Walker Percy
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Overview

e Review of how to solve systems of equations

— Solving equations using Gaussian elimination.

e The simplex algorithm
— a clever search technique

— one of the most important developments in
optimization in the last 100 years
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Solving for three variables

E2 2 X1 - X2 + 2 X3 - 6
E3 X1 - XZ + 2 X3 - 5
Step 1. Make the coefficients for x, in the
three equations 1, 0 and 0.
E4 =.3 E1 X1 + XZ + -5 X3 - 9/2
E;=E,-E, - 3x, |+ ) & = -3
Es=E;-.5E, - 2x, |+ [1.5x;| = | 1/2



C:/Users/jorlin/Documents/15.053/15.053 2008/Lectures 2008/Turning Point Slides.pptx

Steps 2 and 3.

5 3 XZ X3 - '3
6 2X, 1.5x; | = | 1/2
E7=E4_E8 X1 5X3I6 - 7/2
Eg= -E;/3 X, X;/3 = 1
Ey=E¢+2E, 5x;/6 = 5/2
E10=E7—5E12/6 x1 — 1
Eyy= Eg+Eqp/3 X, = 2
E,=6E,/5 X3 = 3
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Variation: write variables at the top, and
keep track of changes in coefficients.

E2 2 X1 - X2 + 2 X3 - 6
E3 X1 - XZ + 2 X3 - 5
X4 X, ) & RHS

m m m
W N =
= NN
LA
N N =
n n n
g o ©
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Solve equations as before

X4 X, ) & RHS
= 2 2 1 = 9
E, 2 -1 2 = 6
E; 1 -1 2 = 5
X4 X, ) & RHS
E,=.5E, 1 1 1/2 = 9/2
E;=E,-E, 0 -3 1 = -3
Es=E;-.5E, 0 -2 3/2 = 1/2
X4 X, ) & RHS
E;=E,-Es 1 0 5/6 = 7/2
Eg=-E5/3 0 1 -1/3 = 1
E;=Eg+2Eg 0 0 5/6 = 5/2
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Some notation

X4 X, X RHS
E; 1 0 5/6 = 7/2
Es 0 1 -1/3 = 1
E, 0 0 5/6 = 5/2

When the equations are written with variables at the top
and coefficients are below, it will be called a tableau.

0 and 1 are unit vectors 1, and 1,
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Q1. Suppose that we finish solving the three equations.
We have just carried out Steps 1 and 2. After we carry out
Step 3, which of the following is not true:

X4 X, ) & RHS
E; 1 0 5/6 = 712
Es 0 1 -1/3 = 1
E, 0 0 5/6 = 5/2

1. The column for x; becomes 1,.
The columns for x, and x; remain as 1, and 1,.

The first equation becomes x, = 7/2.

B @D

The third equation gives the solution for x..
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Pivoting

) & ) & X3 Xg4 RHS
Row 1 2 2 1 1 = 9
Row 2 2 -1 2 0 = 6
Row 3 1 -1 2 1 = 5

To pivot on the coefficient in row i and column j is to
convert column j into 1; by

1. multiply row i by a constant

2. add multiples of row i to other rows.

) & ) & ) & Xg4 RHS
Row 1 0 3 -1 1 = 3
Row 2 1 -1/2 1 0 = 3
Row 3 0 -1/2 1 1 = 2

10
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Q2. Suppose that we pivot on the “-1” in Row 1. What
is coefficient of x, in Row 3 after the pivot?

) & ) & X3 Xg4 RHS

Row 1 0 3 -1 1 = 3
Row 2 1 -1/2 1 0 = 3
Row3 0  -1/2 1 (1)= 2

A. 0

B. 1

C. 2

D. There is not enough information

11
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Summary of solving equations

X4 X, ) & RHS

= N
l @
-
@ N
n
(&) o))

To solve for x,, x,, and x; we
e pivotonrow 1, col 1
e pivot on row 2, col 2
e pivot on row 3, col 3
(assuming the coefficients are non-zero)

This concludes are summary of solving equations.
12
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Linear Programming

e Getting LPs into the correct form for the simplex
method

— changing inequalities (other than non-negativity
constraints) to equalities

— putting the objective function

— canonical form

e The simplex method, starting from canonical form.

13
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A linear program with inequality constraints.

Consider a linear program in which all variables are
non-negative. How can we convert inequality
constraints into equality constraints?

max z= 3Xx;+2X, -X3 +2X,
X, +2X,+X3 - X4 S 95;
2X, 4 x,+xX;+3x, 2 8;

Xq; Xoy X3, X, 2 0

We convert a “s” constraint into a “=*“ constraint
by adding a slack variable, constrained to be 2 0.

X, +2X,+X; - X, +85,= 5;
s;20

14
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Converting a “2” constraint.
2X, ¥4 x,+X;+3x, 2 8;

We convert a “2” constraint into a “=" constraint
by subtracting a surplus variable, constrained to be 2 0.

ZX1 +4X2+X3+3X4 'SZ= 8;

s,20

Whenever we transform a new constraint, we create a new
variable. There is only one equality constraint for
each slack variable and for each surplus variable.

15
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Creating an LP tableau from an LP

Assumptions:
« All variables are nonnegative

 All other constraints are “=*“ constraints.

max z= 3Xx,+2X, -X3 +2X,
X, +2xX,+X; - X, +s;, = §;
2x,+¥4x,+x;+3x, -s,= 8;
Xq; Xoy X3, X4y Sq, S22 0

Question: what variables should we include?

what about the objective function?

16
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An LP tableau

max z= 3x,+2Xx, -X3 +2X,
X, +2x,+X; - X4 +5,4
2X,*¥4 X, +xX;+3Xx, -5,
Xq; Xoy X3, X4y Sq, S22 0

-2+ 3x,+2x, -X; +2x,=0

17
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The simplex method begins with an LP in
canonical form

©C O -
N =2 W
A NN
. O 4
w LN
© = O
- O O
n o n
0o 0 O

An LP tableau is in canonical form if all of the
following are true.

1. All decision variables are non-negative (except for—

2. All (other) constraints are equality constraints.
3. The RHS is non-negative (except for cost row)

4. For each row i, there is a column equal to 1;

18
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An LP in canonical form

Z | Xy | Xy, | X3 | X4 | Xs | Xg
1 3 2 | -1 0 1 0 | =
0 1 -2 1 1 -1 0 | =
0 2 -4 | -1 0 2 1 | =

Our checklist from the previous slide

1. All decision variables are non-negative (except for—
2. All (other) constraints are equality constraints.
3. The RHS is non-negative (except for cost row)

4. For each row i, there is a column equal to 1;

19
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On the row with the objective function

X4

X,

X3

Xy

Xg

Xe

RHS

3

-2

-1

0

1

0

0

we still uses the term.

We will refer to the row with the objective function \
as the “z-row” It’s a term that is used only in 15.053

and 15.058.

Professor Orlin accidentally referred to this row as
the “z-row” a decade ago, and found it amusing at
that time because it sounds the same as 0.

/

20
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Q3. Consider the tableau below, where a,
b, ¢, and ¢ are unknown. Under what
conditions is the tableau in canonical form?
Select the best answer.

-Z X, Xo | X3 | Xg4 X Xg RHS
1 -4 0 0 |=| a
0 1 2 1 0 |=| 5
0 2 4 1 b 2 1 |=| C
1. a20 2. as<0 3. b=0, 4. b=0,
b=0, b=0, cz20 c>0


C:/Users/jorlin/Documents/15.053/15.053 2008/Lectures 2008/Turning Point Slides.pptx

. All decision variables are non-negative (except for-z)

. All (other) constraints are equality constraints.

The RHS is non-negative (except for cost row)

For each row i, there is a column equal to 1;

\

Ghe simplex method
will start with a tableau
in canonical form. lIs it
easy to put a linear

program into canonical

\form? y

/It’s pretty easy to satisfy conditions 1\
to 3. It’s called putting an LP into
standard form. Condition 4 is tricky.
We’ll explain how to do it next lecture.
For now, | ask you and the students to
accept that we start in canonical form.

\_

<| OK. For now. J
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Mental Break

——

23
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Basic variables, non-basic variables,
and basic feasible solutions.

-Z X, X, | X3 | X, X Xg RHS
1 3 -2 -1 0 1 0 |=| O
0 1 -2 1 1 -1 0 |=| S
0 2 -4 | -1 0 2 1 | = 1

The basic variables are the variables

corresponding to the identity matrix. {-z, x,, X¢}-

The nonbasic variables are the remaining

variables. {X,, X,, X3, X5}

The basic feasible solution is the unique solution
obtained by setting the non-basic variables to 0.

z=0, x4=0, x,=0, x3=0, x, =25,

X5 =0, xz=1.

24



Same problem, different basic variables.

-Z X, X, | X3 | X4 X Xg RHS
1 3 -2 -1 0 1 0 | = 0

0 1 -2 1 1 -1 0 | = S

0 2 -4 -1 0 2 1 | = 1

-Z X, X, ) & X, ) & Xg RHS
1 4 | 4 | 0 1 0 0 |=| 5

0 1 -2 1 1 -1 0 | = 5]

0 3 -6 0 1 1 1 | = 6

What are the basic variables? {-z, X3, Xg}.

What are the nonbasic variables?

What is the basic feasible solution?

z=-5, x,=0, x,=0, x;3=5, x,=0,

X5 = 0,

{X1, X9, X4, X5}

Xg = 6.

25



A basic feasible solution is a corner point solution.

Yy All four black circles are corner point
5 (extreme point) solutions.
4

e

26



A warm exercise about optimality
conditions.

Q4. What is the optimal objective value for the
following linear program.

maximize z=-3x,-4x,-0x; +13

subject to Xq; Xoy X320

A. 0

B. 13

C. 20

D. There is not enough information

27



Optimality conditions for a
maximization problem

Optimality Condition. A basic feasible solution is
optimal if every coefficient in the z-row is non-positive.

Basic Var Z | Xq | X, | X3 | X4 | Xs RHS
-Z 1 0 13| 0 0 -1 | =] 17
X5 0 0 2 1 0 2 |=| 4
X, 0 0 -1 0 1 2 |[=| 1
X, 0 1 6 0 0 1 |=| 3

z | Xy | X, | X3 | X4 | Xg
BFS 17 | 3 0 4 1 0

Objective: z=0x, -13x,+0x;+0x, —x; + 17.
There can be no solution with x 2 0 that has value > 17
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Some LP notation

-Z X, X, Xg RHS
1 C, c, C, | =| -Z ] o
0 N c; is the cost coefficient
a1 | A Ay | = 1 i
for variable x.
0 A1 Am2 Amn - bm

-Z X, X, Xg RHS

1 | ¢, | ¢ c, |=]| -z

0 |a, |ay, | . |a, |=] b, C, is the reduced cost
A for variable x.

0 3m1 Em2 Emn = bm

The tableau for the same LP after pivoting
29
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Optimality conditions for a
maximization problem

Optimality Condition. A basic feasible solution is
optimal if the reduced cost of every variable (except z)
IS non-positive.

Basic Var Z | Xy | X, | X3 | X, | Xs RHS
-Z 1 0 13| 0 0 -1 (=] 17
X, 0 0 2 1 0 2 |=| 4
X, 0 0 -1 0 1 2 (= 1
X, 0 1 6 0 0 1 |=| 3

30
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How to obtain a better solution if the bfs is not optimal.
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Zz=4x,—-4x,—-x,+3

Chooseisothatc, > 0. (choosei=1)
 Note: Xx;is a nonbasic variable

Increase Xx,.

Avoid increasing X,, X,, Xs. (Do not change the value
of any of the other nonbasic variables).

31
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Finding a solution with higher profit.

-Z X, X, X3 X, X Xg RHS
1 4 -4 0 -1 0 0 |=| -3
0 1 -2 1 1 -1 0 | = S

0 3 -6 0 1 1 1 | = 6

z=4x,-4x,—-%X,+3

Increase x,. (x, is called the entering variable.) Keep other
non-basic variables at 0 (x, and x, and x;). Adjust the
basic variables x; and x; to maintain feasibility.

-z+ 4x, = -3 z = 3+4Xx,
X+ X3 = 5 X; = 5—-X,

32
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Moving along an edge: The A-Method

z = 3+4Xx, To express the edge,
X, = 5 — X, write all variables in
terms of a single
Xg = 6-3x parameter A.
Xy = A The edge consists of
all vectors x, z that
= + ’
z _ S+4a can be formed on the
Xz = 5-A left for 0 S A< 2.
Why are the bounds
X = X4 = X =0 0 and 2?

33
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The next corner

point occurs
when A = 2.

X, = 2
z = 11
X; = 3
X¢ = 0

Xz went from positive to 0.

It is called the exiting
variable.

34
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Next steps

e How to recognize unboundedness

e A shortcut that permits one to pivot to the next
basic feasible solution (corner point solution)

e But first, a quick review

35
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-Z X, X, ) & X, X RHS
1 0 -2 0 0 +1 | = -6
0 0 2 1 0 2 | = 4
0 0 -1 0 1 2 | = 2
0 1 6 0 0 1 = 3

What is the basic
feasible solution?

What is the edge that
corresponds to increasing
the entering variable?

What is the entering
variable?

What is the next basic
feasible solution? What is
the exiting variable?

36
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Unboundedness

Theorem. If the column coefficients (except for the z-
row) of the entering variable are non-positive, then the

objective value is unbounded from above.

-Z X, X, ) & Xg RHS
1 2 0 0 | = S
0 -1 1 0 |= S
0 0 0 1 | = 6

Suppose that x, enters.
Let x, = A. z = 2A -3

Xs= A +95

X¢= 6

As A increases,
Z increases.

There is no upper

bound on A.
37
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The Min Ratio Rule

Ratio of RHS
X2 | X3 | X4 | Xs RHS  to Col
0 -2 0 0 +1 = -6
o | 2 |(1)] o | 2 |=| a ap
6o | 4,0 | 1 |2 =] 2 coef <0
6 | 0 | 0 | 1 |=]| 3 3/1
_ Z“_ A =min RHS coef
] , col. coef
= A; X5 = A
A<®Z = 6+A; s.t. col.coef>0

The exiting variable is the basic variable
in the row with the min ratio.
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The simplex pivot rule: pivot on the
column of the entering variable and the

row which gave the min ratio.

-Z X, X, X3 X, X RHS
1 0 -2 0 0 +1 = -6
0 0 2 1 0 @ = 4

0 0 -1 0 1 3 = 2

0 1 6 0 0 1 = 3
-Z X, X, X3 X, X RHS
1 0 -3 0.5 0 0 = -8
0 0 1 0.5 0 1 = 2

0 0 1 1 1 0 = 6

0 1 5 0.5 0 0 = 1

39
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The entering variable is x,. What is the
leaving variable?

-Z X, X, X X, ) & RHS
1 0 +2 0 0 1 | =| -2
0 0 2 1 0 2 |=| 4
0 0 -1 0 1 2 | =] 1
0 1 6 0 0 1 | =] 3

>~ O b =
X
s

40
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Summary for maximization.

1.

Find a variable x, so that its cost coefficient is
positive.

Let x, = A.

Adjust the basic variables as a function of A.
Choose A maximal.

Arrive at a new corner point or else increase A
infinitely and prove that the max objective value
is unbounded from above.

41
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Next Lecture

e Review the simplex method

e Show how to obtain an initial bfs

e Prove finiteness (under some assumptions)

42
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