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The Minimum Cost Flow Problem 
 
 



2 

Quotes of the day 

 “A process cannot be understood by stopping it. 
Understanding must move with the flow of the 
process, must join it and flow with it.” 

  --  Frank Herbert  
 
  “No question is so difficult to answer as that to 

which the answer is obvious.” 
  -- George Bernard Shaw 



Overview of lecture 

 More examples of networks 
 
 Examples of flows 

– movement of goods from one location to another. 
 

 Why flows is such an important example of linear 
and/or integer programs 
– integrality property 

 
 Coverage of lecture is for broader knowledge 

than is covered on the quiz on networks. 
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Networks are everywhere 

 Physical networks 
 

 Time space networks 
 

 Connections between concepts 
 

 Social networks 
 

 Network flows:  model movements in networks 
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Road Network 

Power Grid Boston MBTA  
Train Map 

Electrical Network 
Photo courtesy of Derrick Coetzee on Flickr. 

Image removed due to 
copyright restrictions. 

Public domain image (EIA.gov) 

Public domain image (Wikimedia Commons) 

http://www.flickr.com/photos/dcoetzee/3590830075
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Internet 
from wikipedia 

Courtesy of the Opte Project, License CC BY.
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Biological Network 
imdevsoftware.wordpress.com 

© Creative Data Solutions. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

imdevsoftware.wordpress.com
http://ocw.mit.edu/help/faq-fair-use/
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Biological  
neural network 

Public domain (NIH) 

Computer neural 
network 

Public domain (NASA) 
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Supply chain 

Sources:
Plants vendors

ports
Regional warehouses:

Stocking points

Field warehouses:
Stocking points

Customers demand
centers sinks

Transportation costsTransportation costs

Inventory & warehousing
costs

Inventory & warehousing
costs

Production/purchase
costs

Supply

Image by MIT OpenCourseWare.



10 
Train schedule 

Public domain image: Paris-Lyon, 1885 
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diagram:  systems dynamics 
Courtesy of Prof. Jim Hines. Source: 15.875 Applications of System Dynamics, Spring 2004. (MIT OpenCourseWare: Massachusetts Institute of Technology),
http://ocw.mit.edu/courses/sloan-school-of-management/15-875-applications-of-system-dynamics-spring-2004 (Accessed 25 Nov, 2013).

http://ocw.mit.edu/courses/sloan-school-of-management/15-875-applications-of-system-dynamics-spring-2004
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Organizational Chart 
Public domain (NIH) 

Social Networks 
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
© Neil Cummings on Flickr. License CC BY-SA. This content is excluded from our Creative

http://ocw.mit.edu/help/faq-fair-use/
http://www.flickr.com/photos/23874985@N07/4388266976


Flows in networks 

 Shipping from warehouses to retailers 
 

 The min cost flow problem 
 

 A remarkable theorem 
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The transportation problem 
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From/To R1 R2 R3 

A 2 5 3 

B 2 4 5 

C 3 4 2 

D 5 2 3 

Warehouse Supply 

A 40 

B 50 

C 60 

D 50 

Region Demand 

R1 80 

R2 70 

R3 50 

Matrix of linear arc costs 



The Transportation Problem 
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The transportation problem 
is a min cost flow problem 
with the following two 
properties: 

• All arcs are directed 
from “supply nodes” 
to “demand nodes.” 

• Arcs have costs, but 
there is no upper 
bound on arc flows. 
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An LP formulation 
Let xij = amount shipped from i to j  
 assigned to task j. 

xA2 xA3 xA1 RHS xB2 xB3 xB1 xC2 xC3 xC1 xD2 xD3 xD1 RHS 

A 1 1 1 RHS 0 0 0 0 0 0 0 0 0 40 
B 1 1 1 0 0 0 0 0 0 RHS 0 0 0 50 
C 1 1 1 0 0 0 0 0 0 RHS 0 0 0 60 
D 1 1 1 0 0 0 RHS 0 0 0 RHS 0 0 0 50 

1 0 0 1 RHS 0 0 1 0 0 1 0 0 1 80 
2 1 0 0 RHS 1 0 0 1 0 0 1 0 0 70 
3 0 1 0 RHS 0 1 0 0 1 0 0 1 0 50 
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An equivalent formulation 
Sometimes it is better to treat supply as positive 
and demand as negative. 

xA2 xA3 xA1 RHS xB2 xB3 xB1 xC2 xC3 xC1 xD2 xD3 xD1 RHS 

A 1 1 1 RHS 0 0 0 0 0 0 0 0 0 40 
B 1 1 1 0 0 0 0 0 0 RHS 0 0 0 50 
C 1 1 1 0 0 0 0 0 0 RHS 0 0 0 60 
D 1 1 1 0 0 0 RHS 0 0 0 RHS 0 0 0 50 

1 0 0 1 RHS 0 0 1 0 0 1 0 0 1 80 
2 1 0 0 RHS 1 0 0 1 0 0 1 0 0 70 
3 0 1 0 RHS 0 1 0 0 1 0 0 1 0 50 

1 0 0 -1 RHS 0 0 -1 0 0 -1 0 0 -1 -80 
2 -1 0 0 RHS -1 0 0 -1 0 0 -1 0 0 -70 
3 0 -1 0 RHS 0 -1 0 0 -1 0 0 -1 0 -50 



When supply exceeds demand 
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50 

60 

60 

If supply exceeds demand: 

• add a dummy node  

• Flow into the dummy 
node is the slack variable. 

dummy 
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Demand 
nodes 
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Supply/demand constraints 

   xij = flow in (i, j) 
   node supply/demands  bi 

We always assume that Σ bi = 0.  

That is, the available supply equals the required demand. 
    This is wlog.   More on that latter. 

1 

2 

4 

3 3 

7 

-2 

-8 

      Flow out of node i 
 -    Flow into node i 
=     bi 

Example:   Node 4 

x42 – x14 – x34   =  -8  



20 

x14 x23 x32 x34 x42 x12 RHS 

1 0 0 0 0 1 7 
0 1 -1 0 -1 -1 3 
0 -1 1 1 0 0 -2 
-1 0 0 -1 1 0 -8 

= 
= 
= 
= 

Formulating a min cost flow problem 

   xij = flow in (i, j) 
   node supply/demands  bi 
   arc costs cij 
   arc capacities uij 

( , )
Minimize     ij iji j A

c x


0 ≤ xij ≤ uij     

for all arcs 
(i, j) ∈ A 

1 

2 

4 

3 3 

7 

-2 

-8 



21 

An LP formulation of the min cost flow problem 

1 

2 

4 

3    xij = flow in (i, j) 
   arc costs cij 
   arc capacities uij 
   node supply/demands  bi 

0 ≤ xij ≤ uij    for all arcs (i, j) ∈ A 

for j ∈ N 

1
0

n

i
i

b


The amount shipped out of a node minus the 
amount shipped in to the node is the supply. 
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A communication problem 

 The year is 2013, and there is incredible demand for 
videos of MIT class lectures .  MIT has set up three 
sites to handle the incredible load. 

 
 The major demand for the lectures are in London and 

China.  There are some direct links from each of the 
three MIT sites, and the lectures can be sent through 
two intermediate satellite dishes as well. 

 
 Each node has a supply (or a demand) indicating how 

much should be shipped from (or to) the node.  Each 
link (arc) has a unit cost of shipping flow, and a 
capacity on how much can be sent per second.  What 
is the cheapest way of handling the required load? 
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Supplies, Demands, and Capacities 
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Costs per megabyte.   And node labels 
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The Supply/Demand Constraints of the LP 
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1 1 = 200 

1 1 = 300 

1 1 = 100 

-1 -1 1 1 = 0 

-1 -1 1 1 = 0 

-1 -1 -1 = -400 

-1 -1 -1 = -200 

1-6   1-4    2-4    2-5   3-5    3-7  4-6    4-7   5-6   5-7  

There is redundant constraint for the min cost flow problem. 
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The Optimal Flows 
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✓ 

Which of the following is false? 
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1. If we consider all of the supply/demand constraints 
of a min cost flow problem, then each column has a 
coefficient that is 1, a coefficient that is -1, and all 
other coefficient are 0.   

2. There is always a feasible solution for a min cost 
flow problem. 

3. The supplies/demands sum to 0 for a min cost flow 
problem that is feasible. 

4. At least one of the constraints of the min cost flow 
problem is redundant. 



28 

Mental Break 



Why study the min cost flow problem 

 Flows are everywhere 
– communication systems 
– manufacturing systems 
– transportation systems 
– energy systems 
– water systems 

 
 Unifying Problem 

– shortest path problem 
– max flow problem 
– transportation problem 
– assignment problem 

29 

 Integrality Property 

 Can be solved efficiently. 

 Professor Orlin co-
authored a textbook on 
network flows. 

© Prentice Hall. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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A Remarkable Theorem.  (Integrality Theorem) 
   If the supplies, demands, and capacities of a minimum 

cost flow problem are all integral, then every basic 
feasible solution is integer valued.  Therefore, the 
simplex method will provide an integer optimal 
solution.  
 
Note:  Most linear programs can have fractional solutions. 
    x + y = 1,  x – y = 0.       Unique solution (.5, .5) 

Reason:  The coefficients in the LHS of the constraints in 
the tableau remain as 0, 1 or -1. 

Microsoft ® 
Excel 



✓ 

Which of the following is false about the integrality 
theorem for min cost flows? 

1. It is remarkable.  
2. It is in contrast to the fact that most linear programs 

are not guaranteed to have integer valued bfs’s. 
3. It is remarkable. 
4. It can be very useful in solving integer programs. 
5. It was first proved to be true by Professor Orlin. 
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More on the integrality theorem 
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Valid for LPs in which the coefficients 
in each column (ignoring the objective 
coefficients and the RHS) have at most 
one 1 and at most one -1, with all other 
elements being 0. 

Does not depend on the costs. 
 
 
Does depend  RHS being integral. 
 
Does depend on upper and lower 
bounds on variables being integer.   

2 3 
$.04 

4 7 1.6 

OK 

Bad 

Bad 6 1 
u61 = 4.2 
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It is a theorem about basic feasible flows. 
 
Non-basic flows can be fractional. 

1 2 
2 

-2 

A network with arc costs. 
Suppose uij = 1 for all (i, j) 

Suppose b(i) = 0 for all i. 

1 2 
0 

0 

Optimal Flow 1 
    cost = 0 

1 2 
1 

1 

Optimal Flow 2 
    cost = 0 

1 2 
.5 

.5 

Optimal Flow 3 
    cost = 0 



✓ 

Which is not needed to guarantee that 
each bfs for a minimum cost flow 
problem has integer solutions? 
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1. Supplies/Demands are 
all integer valued 

2. Capacities are integer 
valued 

3. Costs are integer 
valued 

4. All the above are 
needed. 



Special cases of the min cost flow problem 

 Shortest path problem 
 

 Maximum flow problem 
 

 Assignment problem 
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The shortest path 
problem with 
nonnegative arc lengths 

3 

5 
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2 

3 

Find the shortest path from 
node 1 to node 5. 

Translation to flow problem:     
    Node 1 has a supply of 1. 
    Node 5 has a demand of 1.  

1 

-1 
The optimal solution will send a 
flow of 1 unit along the shortest 
path from node 1 to node 5. 
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The Maximum Flow Problem 

Directed Graph G = (N, A). 
–  Source s 
–  Sink t 
–  Capacities uij on arc (i,j) 
–  Maximize the flow out of s, subject to  
–   Flow out of i = Flow into i, for i ≠ s or t. 

A Network with arc capacities 

s 

1 

t 

2 

4 

1 

2 

3 

1 

The maximum flow 

s 

1 

t 
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1 

2 

2 

1 



The Assignment Problem 
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5 

6 

7 

8 

1 

1 

1 

1 

1 

1 

1 

1 

10 
15 

10 
19 

10 
13 

10 

1 

2 

3 

4 

14 

21 

13 

The assignment problem is 
the special case of 
transportation problem in 
which all supplies and 
demands are 1. 

Usually, but not always,  
|N1| = |N2|.  

Usually, max utility instead 
of min cost. 

N1 
(Persons) 

N2 
(Tasks) 
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An assignment problem 

 Three MIT hackers have decided to make the 
great dome look like R2D2, in honor of the hack 
from 5/17/99. 
 

 Tasks.    
– Putting the sheets on the great dome  
– Ladder holder 
– Lookout 

 
– Objective:  find the optimal allocation of persons to 

tasks. 
 

– What is the optimal assignment of hackers to tasks. 
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10 

8 

9 

5 

10 

5 

9 

The arc 
numbers 
are utilities. 

The goal is 
to find an 
assignment 
with 
maximum 
total utility. 

Hacker 
1 

Hacker 
2 

Hacker 
3 

Task 1 

Task 2 

Task 3 
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An LP formulation 
 Let xij = proportion of time that hacker i is  

 assigned to task j. 

x12 x21 x22 x23 x32 x33 x11 RHS 

1 0 0 0 0 0 1 1 
0 1 1 1 0 0 0 1 
0 0 0 0 1 1 0 1 

0 1 0 0 0 0 1 1 
1 0 1 0 1 0 0 1 
0 0 0 1 0 1 0 1 

Hacker 1 
Hacker 2 
Hacker 3 

Task 1 
Task 2 
Task 3 
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An Application of the Assignment Problem 

Suppose that there are moving targets in space.   

You can identify each target as a pixel on a radar screen.   

Given two successive pictures, identify how the targets have 
moved. 

This may be 
the most 
efficient 
way of 
tracking 
items. 
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The matching problem:  what is the 
maximum number of persons who can be 
matched to tasks? 

0 1 0 0 

1 0 1 1 

0 1 0 0 

0 1 1 1 

An adjacency matrix 

4 

1 

3 

2 

8 6 5 7 
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The matching problem 

4 
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3 

2 

8 

6 

5 
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0 1 0 0 

1 0 1 1 

0 1 0 0 

0 1 1 1 

An adjacency matrix 

4 

1 

3 

2 

8 6 5 7 

A matching of cardinality three corresponds to 
three 1’s of the adjacency matrix, no two of which 
are in the same row or column. 



0 1 0 0 

1 0 1 1 

0 1 0 0 

0 1 1 1 

An adjacency matrix 

4 

1 

3 

2 

8 6 5 7 

45 

Independent 1’s and line covers 

 

 

Max-Matching Min-Cover 
 
The minimum number 
of lines to cover 
all of the 1’s of a matrix 
is equal to the max 
number of 1’s no two 
of which are on a line. 



Matrix rounding 
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.3 0 .4 .7 

.5 .7 0 1.2 

.2 .6 .2 1.0 
1.0 1.3 .6 

row 
sums 

col 
sums 

x11 x12 x13 
x21 x22 x23 
x31 x32 x33 col 

sums 

|x11 – .3| < 1  

|x21 – .5| < 1  

|x31 – .2 | < 1  

|x11 + x21 + x31    – 1.0 |  <  1  

Round coefficients of the matrix up or down so that the 
row sums and columns sum are also rounded. 



Application to matrix rounding 
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0 ≤ x11 ≤ 1   x12 = 0   0 ≤ x13 ≤ 1   0 or 1 
0 ≤ x21 ≤ 1 0 ≤ x22 ≤ 1 x23 = 0 1 or 2 
0 ≤ x31 ≤ 1 0 ≤ x32 ≤ 1 0 ≤ x33 ≤ 1 1 

1 1 or 2 0 or 1 

row 
sums 

col 
sums 

x11 + x21 + x31  = 1 

Round coefficients of the matrix up or down so that the 
row sums and columns sum are also rounded. 
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An LP formulation 
Let xij = value in row i and column j. 
Let r1, r2, c2 and c3 be slack variables. 

x12 x13 x11 RHS x22 x23 x21 x32 x33 x31 r2 c2 r1 RHS c3 

1 1 1 RHS 0 0 0 0 0 0 0 0 1 1 0 

1 1 1 0 0 0 1 0 0 RHS 0 0 0 2 0 

1 1 1 0 0 0 0 0 0 RHS 0 0 0 1 0 

0 0 1 RHS 0 0 1 0 0 1 0 0 0 1 0 

1 0 0 RHS 1 0 0 1 0 0 0 1 0 2 0 

0 1 0 RHS 0 1 0 0 1 0 0 0 0 1 1 
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Baseball Elimination Problem 

Has Tampa already been eliminated from winning 
in this hypothetical season finale?   

http://riot.ieor.berkeley.edu/~baseball/ 

Bos 

NY 

Balt 

Tor 

82 

77 

80 

79 

Games  
Won 

Games  
Left 

8 

8 

8 

8 

Tamp 74 9 

Bos NY Balt Tor 

Bos 

NY 

Balt 

Tor 

-- 1 4 1 

1 -- 0 3 

4 0 -- 1 

1 3 1 0 

Tamp 2 4 0 3 

Tamp 

2 

4 

0 

3 

0 



Is there a way for Tampa to be tied for the 
lead (or winning) at the end of the season? 

50 

Assume that Tampa wins all of their games. 

• If they can’t lead the division after winning all of 
their games, they certainly can’t lead if they lose 
one or more games. 

Question:  is it possible to assign wins and losses to 
all remaining games so that Tampa ends up in first 
place?  
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Bos NY Balt Tor 

Bos 

NY 

Balt 

Tor 

-- 1 7 1 

1 -- 0 3 

7 0 -- 1 

1 3 1 0 

Tamp 2 4 0 3 

Tamp 

2 

4 

0 

3 

0 

Bos 

NY 

Balt 

Tor 

82 

77 

80 

79 

Games  
Won 

Games  
Left 

11 

8 

8 

8 

Tamp 74 9 

The results if Tampa wins all its games. 

Now check to see if the remaining games can 
be played so that no team wins more than 83 
games.  

Bos 

NY 

Balt 

Tor 

82 

77 

80 

79 

Games  
Won 

Games  
Left 

6 

4 

6 

5 

Tamp 83 0 

Bos NY Balt Tor 

Bos 

NY 

Balt 

Tor 

-- 1 4 1 

1 -- 0 3 

4 0 -- 1 

1 3 1 0 

Tamp 0 0 0 0 

Tamp 

0 

0 

0 

0 

0 



Constraints 

 Upper bound on the number of games won by 
each team (except Tampa). 
 

 Each game is won by one of the two teams 
playing the game. 
 

 The flow on an arc is the number of games won. 
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Red Sox 
vs. Orioles 
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Red Sox 
vs. Blue Jays 
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Yankees  
vs. Blue Jays 

3 

Orioles  
vs. Blue Jays 

1 

1 Red Sox 
vs. Yankees 

Flow on (i,j) is interpreted as games won. 

Red Sox 

Yankees 

Orioles 

Blue 
Jays 
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Red Sox 
vs. Orioles 

4 

Red Sox 
vs. Blue Jays 

1 

Yankees  
vs. Blue Jays 

3 

Orioles  
vs. Blue Jays 

1 

1 Red Sox 
vs. Yankees 

The optimum flow 
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Some Information on the Min Cost Flow Problem 

 Reference text:  Network Flows: Theory, 
Algorithms, and Applications by Ahuja, Magnanti, 
and Orlin [1993] 

 15.082J/6.885J:  Network Optimization  

 Polynomial time simplex algorithm (Orlin [1997]) 

 Basic feasible solutions of a minimum cost flow 
problem are integer valued (assuming that the data 
is integer valued) 

 Very efficient solution techniques in practice 
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