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   Integer Programming 5 
 

     Gomory cuts 
     Constraint generation 
     Formulations using set notations 
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“Mathematicians are like Frenchmen: whatever you 
say to them, they translate into their own language, 
and forthwith it is something entirely different.”  
 Johann Wolfgang von Goethe 
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Quote of the Day 
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Gomory Cuts 
Gomory cuts is a general method for adding valid 
inequalities (also known as cuts) to all MIPs 

• Gomory cuts are VERY useful to improve bounds. 

• Gomory cuts are obtained from a single constraint of the 
optimal tableau for the LP relaxation. 

• Assume here that all variables must be integer valued. 

Case 1:    All LHS coefficients are between 0 and 1.   
            .2 x1 + .3 x2 + .3 x3  + .5 x4 +     x5    =  1.8           (1) 

Valid inequality (ignore contribution from x5) :   
            .2 x1 + .3 x2 + .3 x3  + .5 x4                ≥   .8           (2) 
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Case 2:  LHS coefficients are ≥ 0. 
Case 2:    all LHS coefficients are non-negative 
            1.2 x1 + .3 x2 + 2.3 x3  +   2.5 x4 +     x5    =  4.8           (1) 

Valid inequality (focus on fractional parts):   
            .2 x1   + . 3 x2  + .3 x3      + .5 x4                ≥   .8           (2) 

The fractional part of  

            “1.2 x1 + .3 x2 + 2.3 x3  +  2.5 x4 +     x5” 

is the same as that of   

             “.2 x1 + .3 x2 + .3 x3   +  .5 x4” 
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Gomory cuts:  general case 
Case 3:   General case 
                 1.2 x1 - 1.3 x2 - 2.4 x3  + 11.8 x4 +     x5    =  2.9         (1) 

Valid inequality:   subtract (2) from (1):   
                   .2 x1   + . 7x2  +  .6 x3      + .8 x4              ≥   .9          (3) 

Round down    (be careful about negatives):    
                  1  x1 -   2   x2  -  3  x3  + 11    x4 +    x5     ≤  2            (2) 

The coefficients of the valid inequality are: 
• fractional parts of (1) 
• non-negative   



Another Gomory Cut 

           x1  +   - 2.9 x2 +  - 3.4 x3  +  2.7 x4   =   2.7         (1) 

Round down                  
             x1   +  - 3  x2 +   - 4   x3  +    2  x4     ≤   2           (2) 

Then subtract (2) from (1) to get the  Gomory cut 
                         .1 x2 +    .6 x3    +    .7 x4      ≥   .7         (3) 

Note:  negative coefficients also get rounded down. 



✓ 
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x1 x2 x4 x3 

1.6 - 4.7 -1.4 3.2 = 9.4 

What is the Gomory Cut? 

x5 

1 

 1.        x1    - 4 x2  +  3 x3   -  x4   + x5      ≤              9 

 2.        x1    - 5 x2  +  3 x3   -  2x4   + x5    ≤              9 

 3.     .6 x1   - .7 x2  + .2 x3   - .4 x4            ≥              .4 

 4.     .6 x1   + .3 x2  + .2 x3   +.6 x4           ≥              .4 

 5.        none of the above 
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Does a Gomory cut always exist?    Yes! 
x1 x2 x4 x3 

1.6 - 4.7 -1.4 3.2 = 9.4 

x5 

1 

If the RHS in the final tableau is integer, then the bfs 
is integer, and we have solved the LP. 

Otherwise, there is a non-integer in the RHS.  

9.4 

If all coefficients on the LHS of this constraint are integer, 
then there is no way of satisfying the constraint. 

Therefore, there are 1 or more fractional coefficients. 

1.6 - 4.7 -1.4 3.2 

All of these are for non-basic variables.  These are used for 
the Gomory cut. 



A brief history of Gomory cuts 

 Gomory -- 1963 

 Initial use :  solving IPs without Branch and Bound 

– too slow for this type of use 

 Conventional wisdom prior to 1990: Gomory cuts are not 
useful in practice 

 Balas, Ceria, Cornuejols tested Gomory cuts in the early 
1990s with great success. 

 Current conventional wisdom: Gomory cuts are extremely 
useful for solving IPs in practice. 
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Traveling Salesman Problem (TSP) 

What is a minimum length tour that visits each 
point? 
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Comments on the TSP 

 Very well studied problem 

 Applications: vehicle routing, laser drilling in 
integrated circuits, manufacturing, and more.  

 Large instances have been solved optimally (5000 
cities and larger) 

 Very large instances have been solved 
approximately (10 million cities to within a couple 
of percent of optimum.) 

 We will formulate it by adding constraints that look 
like cuts 
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An Integer Programming Formulation 

cij  = distance from city i to city j 

The salesperson leaves 
city i for each i. 

The salesperson enters 
city j for each j. 

Is this enough? 

 
Constraint? 

 
Constraint? 

 
objective? 

1 

8 

5 4 
6 

3 
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The previous IP needs more constraints 

What is the optimal 
solution satisfying the IP 
constraints? 

The salesperson leaves each city. 

The salesperson enters each city. 

1 2 

But the tour is not connected. 

It consists of two subtours. 

3 4 

5 6 

1 2 3 4 

5 6 
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Subtour elimination constraints 

1 2 3 4 

5 6 

To ensure that 1-2-6 is not a subtour:  
• There is at least one edge of the tour  

from city 1, 2 or 6    to city 3, 4 or 5. 

We want to add 
constraints so that no 
subtour is feasible. 
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Subtour elimination constraints: 
general case 

1 2 3 4 

5 6 

For any proper subset S of cities, there is an edge 
that leaves S and enters N\S. 

Let S ⊆ {1, 2, …, n}, the set of cities.   Let N\S be the 
other cities.  
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But if there 
are 100 
variables that 
must be more 
than a billion 
constraints. 

Actually, the number of 
constraints is around 2100 
, which is more than a 
billion times a billion 
times a billion. 

But, these constraints 
are still useful in 
practice. 

 

 

Are you 
trying to 
make 
my head 
hurt? 

The reason it is useful in 
practice is that we only 
include constraints as 
they are needed. 

 



Constraint generation 

 When an LP has too many constraints, e.g., an 
exponentially large number, constraint generation can be 
used.   Let C denote the set of all constraints. 

 The LP  is solved with a subset S⊆C of the constraints. 
An optimal solution x* is obtained to this LP. 

 If x* violates a constraint in C that are not in S, then this 
constraint is added to S. 

 This approach works if one can efficiently find a violated 
constraint in C\S. 
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Constraint generation for the LP 
relaxation of the TSP 
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0 ≤ xij ≤ 1 for all i, j 

(1) 

(2) 

(3) 

(4) 

(5) 

as needed 

Solve the LP relaxation 
without (5). 
 
If the solution violates 
some of the constraints of 
(5), add them to the LP and 
solve again. 
 
Continue until we have no 
more constraints to add. 
 
Often, this LP solution 
value is very close to the IP 
optimal solution value.  
(less than 2% error). 
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Are you 
saying that 
you can really 
solve an LP 
even though 
there are 
trillions of 
constraints? 

Yes!  This technique really 
works, and it is used in 
practice. 

There are related approaches 
in which one can solve LPs 
with trillions of variables.   

They are called column 
generation approaches. 

 

 

My head 
hurts. 

But we have done enough 
for today.  If you want to 
learn more, you can read 
about column generation 
techniques in AMP in the 
chapter on decomposition. 

 



Mental Break 
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Rest of the lecture 

 Practice with additional applications of IPs 
 

 A common feature of the modeling:   there is a focus on 
subsets of a “ground set.” 
 

 Then we will conclude the segment on integer 
programming 
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Subsets of a ground set 

 In some problems, we start with a collection of items.  This 
is called the ground set. 

– e.g., set of items to choose from for the knapsack 
problem 

 The ground set is sometimes denoted as {1, 2, 3, …, n}. 

 Sometimes, we formulate constraints using notation that 
refers to subsets of the ground set;   e.g., we may write the 
constraint 

–             “x1 + x3 + x5 + x9 ≤ 1” as  

 

22 

where S = {1, 3, 5, 9} 
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053 Chocolates 

1 2 3 

4 

5 6 

7 

8 9 

11 

10 

12 

14 15 

13 

16 

Locate 053 
Chocolate stores so 
that each district 
has a store in it or 
next to it. 

Minimize the 
number of stores 
needed. 

Amit and Mita have started 
a new chocolate company. 
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How do we represent this as an IP? 
xj = 1 if a chocolate store 
          is put in district j 

xj = 0 otherwise 

Minimize x1 + x2 + … + x16 

s.t.   x1 + x2 + x4  + x5  ≥  1 

x1 + x2 + x3 + x5 + x6   ≥  1 

x13 + x15 + x16    ≥  1 

xj ∈ {0, 1}  for each j. 

Variables 

Objective 

Constraints 
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Representation as Set Covering Problem 

1 2 3 

4 

5 6 

7 

8 9 

11 

10 

12 

14 15 

13 

16 

#  Subset  S(j) 

1  {1, 2, 4, 5} 
1 2 

4 

5 
S(j) is j plus all of the  
        districts that share a  
         border with j. 
 
Putting a chocolate store in 
district j “covers” S(j).  
 
Choose a minimum number of 
subsets that cover all of the 
districts. 
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Set covering Problem 

Let S = {1, 2, …, n}, and suppose  Sj ⊆  S  for each j.    

We say that index set J is a cover of S if 

Set covering problem:  find a minimum 
cardinality set cover of S. 

Applications  

• Locating fire stations. 

• Locating hospitals. 

• Locating Starbucks 

   and many non-obvious applications. 

= S 
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Packing diamonds into a Chinese checkerboard 



 

The Diamond Packing Problem
 
 Let D be the collection of diamonds 

 Decision variables: x d for d ∈ D 
– xd = 1 if diamond d is selected 
– xd = 0 if diamond d is not selected. 

d 
d’ xd 

 xd   1
 

Let O be the pairs of diamonds that overlap.  
(d, d’) ∈ O, implies that diamonds d and d’ have at least 
one point in common 
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Set packing problem 

Let S = {1, 2, …, n}, and suppose  Sj ⊆  S  for each j.    

We say that index set J is a packing of S if 

     Si ∩ Sj = ∅     for i, j ∈ J. 

Set packing problem:  find a maximum cardinality set 
cover of S. 

Common types of applications:    

• Schedule a number of activities at the same 
time (activities cannot be scheduled at the 
same time if they require the same resource). 

• Allocate building space 



Formulating the game of Sudoku as an IP 

 Each row has each of the values in [1, 9] 

 Each column has each of the values in [1, 9] 

 Each of the nine 3 x 3 blocks has each of the 
values in [1, 9]. 
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Labels for cells in Sudoku 

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9 

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9 

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9 

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9 
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Each row has each of 
the numbers 1 to 9 

for each i ∈ [1,9]  and 
for each k ∈ [1,9]  

Each column has each 
of the numbers 1 to 9 

for each j ∈ [1,9]  and 
for each k ∈ [1,9]  

Each “block” has each 
of the numbers 1 to 9 

Create sets for each block.  

Constraint on next page. 

Formulate these 9 constraints using 
integer programming 

Formulate these 9 constraints using 
integer programming 

Don’t bother with these yet.  
We need more notation 

9 x 9 x 9 = 729 variables. 
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1,1 1,2 1,3 

2,1 2,2 2,3 

3,1 3,2 3,3 

3r-2, 3c-2 3r-2, 3c-1 3r-2, 3c 

3r-1, 3c-2 3r-1, 3c-1 3r-1, 3c 

3r, 3c-2 3r, 3c-1 3r, 3c 

S1,1 =  {(1,1), (1, 2), (1, 3),  
            (2, 1), …, (3, 3)}.  

Sr,c =  for r = 1 to 3 and 
for c = 1 to 3. 

for each r = 1 to 3,    c = 1 to 3,   and  
and for each k ∈ [1, 9]  

Define 9 blocks 
within the 9 x 9 
Sudoku game. 

S1,1   S1,2   

S2,1   



What happens if an IP  
cannot be solved efficiently? 

 Sometimes, an IP cannot be solved efficiently. 
 

 Alternative approaches: 

 Use Branch and Bound but be less restrictive.   
Don’t ask for a guarantee of optimality.   
Be satisfied with 5% or 10% guarantees. 

 Use techniques from another field, such as 
artificial intelligence. 

 Rely on simple but practical heuristics for the 
problem at hand.   (Illustrated in the 3rd lecture 
on networks.) 
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Final remarks on integer programming 

 Very powerful modeling approach 
 Standard approach within math optimization 
 Can model virtually any combinatorial problem 
 Lots of techniques for modeling logical 

constraints and non-linearities  
 
 

 Solution technique of choice:  Branch and bound 
 works well if nodes can be pruned early 
 better bounding helps early pruning 
 better bounding via valid inequalities   
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