
1

15.053/8 April 9, 2013

 Integer Programming 5

 Gomory cuts
 Constraint generation
 Formulations using set notations

2

“Mathematicians are like Frenchmen: whatever you
say to them, they translate into their own language,
and forthwith it is something entirely different.”
 Johann Wolfgang von Goethe

2

Quote of the Day

3

Gomory Cuts
Gomory cuts is a general method for adding valid
inequalities (also known as cuts) to all MIPs

• Gomory cuts are VERY useful to improve bounds.

• Gomory cuts are obtained from a single constraint of the
optimal tableau for the LP relaxation.

• Assume here that all variables must be integer valued.

Case 1: All LHS coefficients are between 0 and 1.
 .2 x1 + .3 x2 + .3 x3 + .5 x4 + x5 = 1.8 (1)

Valid inequality (ignore contribution from x5) :
 .2 x1 + .3 x2 + .3 x3 + .5 x4 ≥ .8 (2)

4

Case 2: LHS coefficients are ≥ 0.
Case 2: all LHS coefficients are non-negative
 1.2 x1 + .3 x2 + 2.3 x3 + 2.5 x4 + x5 = 4.8 (1)

Valid inequality (focus on fractional parts):
 .2 x1 + . 3 x2 + .3 x3 + .5 x4 ≥ .8 (2)

The fractional part of

 “1.2 x1 + .3 x2 + 2.3 x3 + 2.5 x4 + x5”

is the same as that of

 “.2 x1 + .3 x2 + .3 x3 + .5 x4”

5

Gomory cuts: general case
Case 3: General case
 1.2 x1 - 1.3 x2 - 2.4 x3 + 11.8 x4 + x5 = 2.9 (1)

Valid inequality: subtract (2) from (1):
 .2 x1 + . 7x2 + .6 x3 + .8 x4 ≥ .9 (3)

Round down (be careful about negatives):
 1 x1 - 2 x2 - 3 x3 + 11 x4 + x5 ≤ 2 (2)

The coefficients of the valid inequality are:
• fractional parts of (1)
• non-negative

Another Gomory Cut

 x1 + - 2.9 x2 + - 3.4 x3 + 2.7 x4 = 2.7 (1)

Round down
 x1 + - 3 x2 + - 4 x3 + 2 x4 ≤ 2 (2)

Then subtract (2) from (1) to get the Gomory cut
 .1 x2 + .6 x3 + .7 x4 ≥ .7 (3)

Note: negative coefficients also get rounded down.

✓

7

x1 x2 x4 x3

1.6 - 4.7 -1.4 3.2 = 9.4

What is the Gomory Cut?

x5

1

 1. x1 - 4 x2 + 3 x3 - x4 + x5 ≤ 9

 2. x1 - 5 x2 + 3 x3 - 2x4 + x5 ≤ 9

 3. .6 x1 - .7 x2 + .2 x3 - .4 x4 ≥ .4

 4. .6 x1 + .3 x2 + .2 x3 +.6 x4 ≥ .4

 5. none of the above

8

Does a Gomory cut always exist? Yes!
x1 x2 x4 x3

1.6 - 4.7 -1.4 3.2 = 9.4

x5

1

If the RHS in the final tableau is integer, then the bfs
is integer, and we have solved the LP.

Otherwise, there is a non-integer in the RHS.

9.4

If all coefficients on the LHS of this constraint are integer,
then there is no way of satisfying the constraint.

Therefore, there are 1 or more fractional coefficients.

1.6 - 4.7 -1.4 3.2

All of these are for non-basic variables. These are used for
the Gomory cut.

A brief history of Gomory cuts

 Gomory -- 1963

 Initial use : solving IPs without Branch and Bound

– too slow for this type of use

 Conventional wisdom prior to 1990: Gomory cuts are not
useful in practice

 Balas, Ceria, Cornuejols tested Gomory cuts in the early
1990s with great success.

 Current conventional wisdom: Gomory cuts are extremely
useful for solving IPs in practice.

9

10

Traveling Salesman Problem (TSP)

What is a minimum length tour that visits each
point?

11

Comments on the TSP

 Very well studied problem

 Applications: vehicle routing, laser drilling in
integrated circuits, manufacturing, and more.

 Large instances have been solved optimally (5000
cities and larger)

 Very large instances have been solved
approximately (10 million cities to within a couple
of percent of optimum.)

 We will formulate it by adding constraints that look
like cuts

12

An Integer Programming Formulation

cij = distance from city i to city j

The salesperson leaves
city i for each i.

The salesperson enters
city j for each j.

Is this enough?

Constraint?

Constraint?

objective?

1

8

5 4
6

3

7

2

13

The previous IP needs more constraints

What is the optimal
solution satisfying the IP
constraints?

The salesperson leaves each city.

The salesperson enters each city.

1 2

But the tour is not connected.

It consists of two subtours.

3 4

5 6

1 2 3 4

5 6

14

Subtour elimination constraints

1 2 3 4

5 6

To ensure that 1-2-6 is not a subtour:
• There is at least one edge of the tour

from city 1, 2 or 6 to city 3, 4 or 5.

We want to add
constraints so that no
subtour is feasible.

15

Subtour elimination constraints:
general case

1 2 3 4

5 6

For any proper subset S of cities, there is an edge
that leaves S and enters N\S.

Let S ⊆ {1, 2, …, n}, the set of cities. Let N\S be the
other cities.

16

But if there
are 100
variables that
must be more
than a billion
constraints.

Actually, the number of
constraints is around 2100
, which is more than a
billion times a billion
times a billion.

But, these constraints
are still useful in
practice.

Are you
trying to
make
my head
hurt?

The reason it is useful in
practice is that we only
include constraints as
they are needed.

Constraint generation

 When an LP has too many constraints, e.g., an
exponentially large number, constraint generation can be
used. Let C denote the set of all constraints.

 The LP is solved with a subset S⊆C of the constraints.
An optimal solution x* is obtained to this LP.

 If x* violates a constraint in C that are not in S, then this
constraint is added to S.

 This approach works if one can efficiently find a violated
constraint in C\S.

17

Constraint generation for the LP
relaxation of the TSP

18

0 ≤ xij ≤ 1 for all i, j

(1)

(2)

(3)

(4)

(5)

as needed

Solve the LP relaxation
without (5).

If the solution violates
some of the constraints of
(5), add them to the LP and
solve again.

Continue until we have no
more constraints to add.

Often, this LP solution
value is very close to the IP
optimal solution value.
(less than 2% error).

19

Are you
saying that
you can really
solve an LP
even though
there are
trillions of
constraints?

Yes! This technique really
works, and it is used in
practice.

There are related approaches
in which one can solve LPs
with trillions of variables.

They are called column
generation approaches.

My head
hurts.

But we have done enough
for today. If you want to
learn more, you can read
about column generation
techniques in AMP in the
chapter on decomposition.

Mental Break

20

Rest of the lecture

 Practice with additional applications of IPs

 A common feature of the modeling: there is a focus on
subsets of a “ground set.”

 Then we will conclude the segment on integer
programming

21

Subsets of a ground set

 In some problems, we start with a collection of items. This
is called the ground set.

– e.g., set of items to choose from for the knapsack
problem

 The ground set is sometimes denoted as {1, 2, 3, …, n}.

 Sometimes, we formulate constraints using notation that
refers to subsets of the ground set; e.g., we may write the
constraint

– “x1 + x3 + x5 + x9 ≤ 1” as

22

where S = {1, 3, 5, 9}

23

053 Chocolates

1 2 3

4

5 6

7

8 9

11

10

12

14 15

13

16

Locate 053
Chocolate stores so
that each district
has a store in it or
next to it.

Minimize the
number of stores
needed.

Amit and Mita have started
a new chocolate company.

24

How do we represent this as an IP?
xj = 1 if a chocolate store
 is put in district j

xj = 0 otherwise

Minimize x1 + x2 + … + x16

s.t. x1 + x2 + x4 + x5 ≥ 1

x1 + x2 + x3 + x5 + x6 ≥ 1

x13 + x15 + x16 ≥ 1

xj ∈ {0, 1} for each j.

Variables

Objective

Constraints

25

Representation as Set Covering Problem

1 2 3

4

5 6

7

8 9

11

10

12

14 15

13

16

Subset S(j)

1 {1, 2, 4, 5}
1 2

4

5
S(j) is j plus all of the
 districts that share a
 border with j.

Putting a chocolate store in
district j “covers” S(j).

Choose a minimum number of
subsets that cover all of the
districts.

26

Set covering Problem

Let S = {1, 2, …, n}, and suppose Sj ⊆ S for each j.

We say that index set J is a cover of S if

Set covering problem: find a minimum
cardinality set cover of S.

Applications

• Locating fire stations.

• Locating hospitals.

• Locating Starbucks

 and many non-obvious applications.

= S

27

Packing diamonds into a Chinese checkerboard

The Diamond Packing Problem

 Let D be the collection of diamonds

 Decision variables: x d for d ∈ D
– xd = 1 if diamond d is selected
– xd = 0 if diamond d is not selected.

d
d’ xd

 xd   1

Let O be the pairs of diamonds that overlap.
(d, d’) ∈ O, implies that diamonds d and d’ have at least
one point in common

28

29

Set packing problem

Let S = {1, 2, …, n}, and suppose Sj ⊆ S for each j.

We say that index set J is a packing of S if

 Si ∩ Sj = ∅ for i, j ∈ J.

Set packing problem: find a maximum cardinality set
cover of S.

Common types of applications:

• Schedule a number of activities at the same
time (activities cannot be scheduled at the
same time if they require the same resource).

• Allocate building space

Formulating the game of Sudoku as an IP

 Each row has each of the values in [1, 9]

 Each column has each of the values in [1, 9]

 Each of the nine 3 x 3 blocks has each of the
values in [1, 9].

30

31

Labels for cells in Sudoku

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 4,9

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8 5,9

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9

7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9

32

Each row has each of
the numbers 1 to 9

for each i ∈ [1,9] and
for each k ∈ [1,9]

Each column has each
of the numbers 1 to 9

for each j ∈ [1,9] and
for each k ∈ [1,9]

Each “block” has each
of the numbers 1 to 9

Create sets for each block.

Constraint on next page.

Formulate these 9 constraints using
integer programming

Formulate these 9 constraints using
integer programming

Don’t bother with these yet.
We need more notation

9 x 9 x 9 = 729 variables.

33

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

3r-2, 3c-2 3r-2, 3c-1 3r-2, 3c

3r-1, 3c-2 3r-1, 3c-1 3r-1, 3c

3r, 3c-2 3r, 3c-1 3r, 3c

S1,1 = {(1,1), (1, 2), (1, 3),
 (2, 1), …, (3, 3)}.

Sr,c = for r = 1 to 3 and
for c = 1 to 3.

for each r = 1 to 3, c = 1 to 3, and
and for each k ∈ [1, 9]

Define 9 blocks
within the 9 x 9
Sudoku game.

S1,1 S1,2

S2,1

What happens if an IP
cannot be solved efficiently?

 Sometimes, an IP cannot be solved efficiently.

 Alternative approaches:

 Use Branch and Bound but be less restrictive.
Don’t ask for a guarantee of optimality.
Be satisfied with 5% or 10% guarantees.

 Use techniques from another field, such as
artificial intelligence.

 Rely on simple but practical heuristics for the
problem at hand. (Illustrated in the 3rd lecture
on networks.)

34

Final remarks on integer programming

 Very powerful modeling approach
 Standard approach within math optimization
 Can model virtually any combinatorial problem
 Lots of techniques for modeling logical

constraints and non-linearities

 Solution technique of choice: Branch and bound
 works well if nodes can be pruned early
 better bounding helps early pruning
 better bounding via valid inequalities

35

MIT OpenCourseWare
http://ocw.mit.edu

15.053 Optimization Methods in Management Science
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

