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MIT 15.053, Spring 2013
 

Problem Set 6, Due: Thursday April 11th, 2013 

Problem Set Rules: 

1. Each student should hand in an individual problem set. 

2. Discussing problem sets with other students is permitted. Copying from another person 
or solution set is not permitted. 

3. Late assignments will not be accepted. No exceptions. 

4. The non-Excel solution should be handed in at the beginning of class on the day the 
problem set is due. The Excel solutions, if required, should be posted on the website by 
the beginning of class on the day the problem set is due. Questions that require an Excel 
submission are marked with Excel submission . For Excel submission questions, only 
the Excel spreadsheet will be graded. 

Problem 1 

(Total 16 points) We are using Branch-and-Bound to solve an Integer Program with an objective 
function in maximization form. All coefficients of the objective function are integer valued. 

We currently have the following Branch-and-Bound tree, where nodes are labeled N1, . . . , N9 

and the numbers below each node indicate the value of its LP relaxation. The incumbent 
solution was obtained in solving the LP at N4. The optimal LP solution was feasible for the IP 
and had objective value 25. 
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25.2   ?  

(a) (4 points) Let	 v9 be the optimum value of the LP associated with node N9. Choose the 
best answer. (It is the answer that is correct and provides the most information.) 

i.	 v9 ≤ 27.2 



ii. v9 ≤ 26.5 

iii. v9 = 26.5 

iv. v9 ≥ 25.2 

Solution. ii. v9 ≤ 26.5 because the parent node has LP solution 26.5, and thus 
when adding an additional constraint in the child node, it cannot have a higher 
optimal solution. 

(b) (4 points) With the information that we currently have, what are the best upper and lower 
∗bounds that we can give on the value v of the optimal solution for the integer program? 

Solution. We know the solution must be at least as high as the incumbent, which is 
v4 = 25; in addition, the optimal solution cannot be greater than v3 = 26.5, and thus must 
also be less than or equal to 26 because all of the IP coefficients are integer. Therefore, 
25 ≤ v∗ ≤ 26. 

(c) (8 points) For each of the following nodes of the tree, say whether it is active (A) or fathomed 
(F) or whether there is not enough information (NEI) to know. We recall that fathoming 
is the same as pruning. 

(i) N4 

Solution. F- N4 has been Fathomed has its LP relaxation is a feasible solution 
for the IP, and it is the incumbent solution. 

(ii) N5 

Solution. A- N5 has an LP solution higher than the incumbent, so its children 
will need to be checked. 

(iii)	 N7 

Solution. F- The LP solution for N7 is less than the incument, so it is fathomed. 

(iv)	 N8 

Solution. F- Because the LP solution for N8 is 25.2, the IP feasible solution for 
any of its descendants cannot be higher than 25, which is the incumbent solution; 
therefore, it is fathomed. 

(v) N9 

Solution. NEI- The LP solution for N9 must be known to know if it is fathomed 
or not. 

Problem 2 

(Total 24 points) Consider the following capital budgeting problem: We have a set of six possible 
investments with the following characteristics: 

Investment 1 2 3 4 5 6 

NPV Added $33 $45 $25 $17 $39 $23 
Cash Required $10 $14 $8 $6 $12 $8 

We want to find the optimal set of investments that maximizes the total Net Present Value 
(NPV) while limiting the amount of initial investment to $28. 
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(a) (4 points) Write an integer program to determine the optimal set of investments that max­
imizes the net present value. 

Solution. This is a knapsack type of problem. Define binary decision variables 
x1, x2, . . . , x6 for each investment. The integer program that yields the optimal set of 
investments that maximizes the net present value is given below. 

max 33x1 + 45x2 + 25x3 + 17x4 + 39x5 + 23x6 

s.t. 10x1 + 14x2 + 8x3 + 6x4 + 12x5 + 8x6 ≤ 28, (Initial investment constraint) 

x1, x2, x3, x4, x5, x6 ∈ {0, 1}. 

(b)	 Excel submission (15 points) Start with the incumbent x1 = 1, x2 = 0, x3 = 0, x4 = 
1, x5 = 1, and x6 = 0. Its objective value is 89. Solve for the first five nodes of the Branch 
and Bound tree as given on the spreadsheet. (The spreadsheet is already set up to solve 
the linear program.) You should adjust upper or lower bounds in each case to solve the 
LP. Write the solutions in the spaces indicated on the spreadsheet. Also enter the objective 
values manually after the solutions to the nodes of the tree. (Don’t copy cell K19 because 
it contains a formula. ) Indicate in column M whether the nodes of the tree are fathomed 
or not. 

Solution. See Excel solution. 

(c) (5 points) Either node 2 or node 3 will repeat the solution from node 1. Explain why.	 Either 
node 4 or node 5 repeats the solution of node 2. Explain why. 

Solution. Node 3 repeats Node 1. Note that the optimal solution of Node 1 has x1 = 1. 
Therefore adding a constraint x1 = 1 to Node 3 yields the same optimal solution. For the 
similar reason, Node 5 repeats the solution of Node 2, because both have x1 = 0, x2 = 1. 

Solution. 

Problem 3 

(All parts are Excel submission .) (Total 18 points) Consider the same integer program from 
Problem 2. However, this time, we will solve the problem using cutting planes. We will start 
with the same incumbent as in Problem 2. This incumbent is the optimal integer solution. 

(a) (4 points) Solve the linear program. Does the solution to this LP prove that the incumbent 
is optimal for the IP? Why or why not? If your answer to part (a) is “no”, then continue 
to Part (b). 

Solution. No, the LP solution does not prove that the incumbent is optimal for the 
IP. Because the LP solution is fractional, and it turns out that ZLP > ZIP . 

(b) (7 points) You obtained a solution for Part (a) in which two variables are 1 and one is 
a fraction less than 1. Add to the LP the “cut” xi + xj + xk ≤ 2, where these are the 
three decision variables that were positive in the LP solution. (And write the cut on the 
spreadsheet in the indicated place.) Solve the revised linear program. Does the solution to 
this LP prove that the incumbent is optimal for the IP? Why or why not? If your answer 
to Part (b) is “no”, then continue to Part (c). 
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Solution. From the LP solution, we add a constraint x1 + x2 + x5 ≤ 2. The LP does 
not prove the incumbent is optimal, because the LP solution is fractional and ZLP = 
90.75 > 89, and we are maximizing. 

(c) (7 points) You obtained a solution for Part (b) in which two variables are 1 and one is a 
fraction less than 1. Add to the LP from Part (b) the “cut” xi + xj + xk ≤ 2, where these 
are the three decision variables that were positive in the LP solution. (And write the cut on 
the spreadsheet in the indicated place.) Solve the revised linear program. Does the solution 
to this LP prove that the incumbent is optimal for the IP? Why or why not? 

Solution. Add another constraint x1 + x3 + x5 ≤ 2. The LP relaxation still does not 
prove the incumbent is optimal, because the LP solution is fractional and ZLP = 90.6 > 
89. 

Problem 4 

(Total 12 points, 3 points each) We want to find valid inequalities for the following 0-1 knapsack 
problem: ⎫ 

max 22x1 + 10x2 + 16x3 + 11x4 + 18x5 + 6x6 ⎬ 
s.t.: 4x1 + 3x2 + 7x3 + 6x4 + 5x5 + 8x6 ≤ 15 (KP)⎭ 

x1, x2, x3, x4, x5, x6 ∈ {0, 1}. 

For each of the inequalities below, identify whether or not they are valid. 

(a) x1 + x3 + x4 ≤ 2. 

Solution. Valid- the sum of the constraint coefficients is 17, which breaks the con­
straint, so x1 + x3 + x4 must be less than 3. 

(b) x2 + x3 + x5 ≤ 2. 

Solution. Invalid- the sum of the constraint coefficients is 15, meaning all three decision 
variables could potentially be 1 and x2 + x3 + x5 could be 3. 

(c) x3 + x5 ≤ 1. 

Solution. Invalid- both decision variables could be 1, and the constraint would not be 
broken. 

(d) x1 + x2 + x4 + x6 ≤ 3. 

Solution. Valid- the sum of all of the constraint coefficients for these four decision 
variables is 21, which breaks the constraint, so at most three can be chosen. 
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Problem 5 

(Total 30 points)We want to solve the following integer program with two variables: 

max 4x1 + 3x2 

s.t.: 2x1 + x2 ≤ 11 
−x1 + 2x2 ≤ 6 

∀j = 1, 2 xj ≥ 0 
∀j = 1, 2 xj ∈ Z. 

Let s1, s2 be the slack variables for the first and second constraint respectively. Solving the LP 
relaxation for this problem yields the following optimal Simplex tableau: 

⎫ ⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎭
 

Basic x1 x2 s1 s2 Rhs 
(−z) -11/5 -2/5 -133/5 
x1 

x2 

1 
1 

2/5 
1/5 

-1/5 
2/5 

16/5 
23/5 

(a) (4 points) Slack variables are usually allowed to be fractional. If x1 and x2 are both integers, 
will s1 and s2 also be integers? Briefly explain why or why not. 

Solution. Yes, they can be considered integer constrained because they are equal to the 
sum of integers (integer variables and integer coefficients). For example: s1 = 11−2x1−x2, 
and the rhs is integer because x1 and x2 is integer. It follows that s1 can be considered 
integer constrained as well. 

(b) (6 points) Derive a Gomory cut from each of the first two rows in the optimal Simplex 
tableau. 

Solution. The first row reads: 

2 1 16 
x1 + 

5 
s1 − 

5 
s2 = 

5 
. 

We round down the coefficients on the left-hand side, and obtain: 

16 
x1 − s2 ≤ . 

5 

Because x1 and s2 are integer, the rhs must be integer as well. Therefore, we can round 
it down: 

x1 − s2 ≤ 3. 

We now subtract this last equation from the first, and obtain: 

2 4 1 
s1 + s2 ≥ . 

5 5 5 

We repeat this procedure for the second row and obtain: 

1 2 3 
s1 + s2 ≥ . 

5 5 5 

These are the two Gomory cuts. 

5
 



−x1 + 2x2 ≤ 6

x2 ≤ 4

x1 + 2x2 ≤ 11

Figure 1: Sketch for Part 1.C. 

(c) (6 points) Express the cuts in terms of the original variables x1 and x2. Graph the feasible 
region for x1 and x2, and illustrate the cuts on the graph. 

Solution. From the definition of the slack variables, we know that: 

s1 = 11 − 2x1 − x2 

s2 = 6 + x1 − 2x2. 

Therefore we can substitute for these two variables in the Gomory cuts, and obtain the 
following cuts: 

9 
x2 ≤ 

2 
x2 ≤ 4. 

Clearly the second cut is stronger than the first one. We can now graph the feasible region 
in the (x1, x2)-space: see Figure 1. 

(d) (6 points) We now append the cuts (or the cut, if only one of them is needed) to the LP 
relaxation, and resolve. We provide the optimal Simplex tableau after resolving below: 

Basic x1 x2 s1 s2 s3 Rhs 
(−z) -2 -1 -26 
x1 1 1/2 -1/2 7/2 
s2 1/2 1 -5/2 3/2 
x2 1 1 4 

where s3 is the slack variable corresponding to the appended cut. Which rows can be used 
to derive Gomory cuts? Compute the cuts. Rewrite them in terms of x1 and x2. 
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−x1 + 2x2 ≤ 6

x2 ≤ 4

x1 + 2x2 ≤ 11

x1 + x2 ≤ 7

Figure 2: Sketch for Part 1.E. 

Solution. We can derive Gomory cuts from the first and the second row, because the 
rhs value is fractional. The third row has integer coefficients, therefore it cannot be used 
to derive a Gomory cut. 

Both rows yield the same cut, thus we only derive the first one. We obtain: 

1 1 1 
s1 + s3 ≥ . 

2 2 2 

(e) (8 points) Draw the cuts on your sketch and find the new optimal solution graphically. 
Is this new solution optimal? (Hint: if you did everything correctly, the new solution is 
optimal with objective function value 25.) 

Solution. In terms of x1 and x2, the new cut can be written as x1 + x2 ≤ 7. The cut 
is shown in Figure 2. We can now see graphically that the integer point (4, 3) is optimal 
for the LP relaxation, hence it is optimal for the original problem. 
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