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6‘5) OUTLINE

1. Whatis a CLIMATE MODEL?
2. Designing a model

= Spatial Grid

= Continuity equation

= Time step and stability

3. Solving the equations

= Reality... Computation time and
parameterization



C 1. What is a CLIMATE MoDEL? IHlir

* A model that incorporates the principles of
physics, chemistry, biology into a
mathematical model of climate

e.g. GCM (Global Circulation Model)

« Such a model has to answer what happens to
temperature, precipitation, humidity, wind
speed and direction, clouds, ice and other
variables all around the globe over time



Changes in the Atmosphere: Changes in the
Composition, Circulation Hydrological Cycle
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Example of a climate model
MIT-IGSM
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A schematic figure of the MIT-IGSM Version 2
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Spatial grid

We divide the earth’s
atmosphere into a finite
number of boxes (grid
cells).

Assume that each
variable has the same

value throughout the box.

Write a budget for each
each box, defining the
changes within the box,
and the flows between
the boxes.

Figure © Henderson-Sellers: A Climate Modeling Primer.

2. DESIGNING a MODEL
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At the surface: Ground temperature,
water and energy, momentum and
CO, fluxes

Figure by MIT OpenCourseWare, adapted from
Henderson-Sellers: A Climate Modeling Primer.



Continuity Equations Um
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CHANGE = (Production - Destruction) +/- (Gain or Loss by advection)
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(called advection or convection)



Continuity Equations
(Atmosphere/Oceans in 3-C

S%ivfng the Basic Equations for the Atmosphere in 3-D
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G‘E) The Equations

for Chemistry and Biology

» For ocean chemistry, air-sea CO, flux is:

Air-sea CO, exchange flux
=k, (pCO - pCO

2, ocean 2,atmosphere)

* For land biology and chemistry,
atmosphere-land CO, flux is:

Atmosphere-land CO, exchange flux

= Photosynthesis — Respiration — Decomposition

= (GPP-R,)- R,



Time stepping and stability  |l|§1r-

=Time Is also treated in discrete units.

*Time intervals depend on the size of the boxes:

General Rule for stability: the CFL condition

> Intuitively don’t want to

transport more than a grid
cell over a time step.

>
UAL

Eg. In atmosphere max u = 100m/s; grid spacing = 300 km;
Constraint: At < 3000 seconds (less than 1 hour)



@) 3. How to Solve the equations T

« We want to solve for the values of the variables
described by these equations over time.

l.e. to integrate the set of differential equations

« Essentially we have seven (or more) variables
described by the same number of equations that
describe change with respect to time. (T,p, p, u, v, w,
water, etc.). So we should be able to solve for the
values of the variables through time...

 BUT these equations cannot be solved analytically;
there is no closed form solution

e So need to use numerics: discretize in time and
space...



Demand on Computation RIT

Total Computation Time:
For example, for a2.8° x 2.8 ° degree atmospheric model

How Many Time Steps

How Many Grid Cells?  What Happens at each Grid Cell? Per Year?
128 Longitudes
64 Latitudes 10 Variables 24+ Time Steps per Day
* 18 Vertical Levels » 100 Computations Each 365 Days per Year
~ 150,000 Grid Cells ~ 1,000 Computations per Grid ~ 10,000 Time Steps per Y ear

Cell per Time Step

. Computations Time Steps .11: - Calculations
150,000 (Grid Célls) * 1,000 — _ * 10,000 = 1.5 Trillion=—"—""—
( ) (Grid Céll) (Time Step) Y ear Y ear

With a1 GHz machine, a1 year ssmulation takes about three hours

And, remember, thisisjust about the simplest possible model and we generally want
to run the model for decades or centuries...




CCM3E Horizonlal Resclution (2.8 « 2.8 degrees)
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C‘) Parameterizations HIT

For GCMSs, grid cells are typically hundreds of miles
across and often there are thirty vertical layers for the
atmosphere.

Many processes happen at smaller scales and must be
approximately included (a.k.a., parameterized),
including:

«Convection *River Runoff into Oceans
*Cloud Cover *“Eddy Fluxes”

Ilce Cover: sea and land (glaciers) +Sharp weather fronts
*Snow Cover «“Gravity Waves”

*Rainfall Mountains

*Emissions of Pollutants Cities (heat islands, emissions, etc)
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