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OCEAN and LAND BIOSPHERES PLAY A
SIGNIFICANT ROLE IN CLIMATE

ECOSYSTEM
IMPACTS
ON CLIMATE
(reflectivity,
water & carbon cycles,
natural non-CO2
gas emissions)



Carbon Cycle in Ocean
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AIR-SEA FLUX of CO, (1980-1999, mol m=2 yr+)
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Courtesy of the American Geophysical Union. Used with permission. From McKinley, G. A., M. J. Follows, and J. Marshall (2004),
Mechanisms of air-sea CO2 flux variability in the equatorial Pacific and the North Atlantic, Global Blogeochem Cycles 18, GB2011, doi:10.1029/2003GB002179.

Ref: from the model of McKinley et al. (2003, 2004). T he offline biogeochemical
ocean model was driven by time varying cir culation state estimates from the
ECCO group (http://www.ecco-group.org; Section 2.3.1) and included
representations of ocean carbon and oxygen cycleswith a simplified
representation of export production.



http://www.ecco-group.org/

Terrestrial Ecosystem Model

(Ecosystems Center, Marine Biology Laboratory)

Transient version predicts net flux of carbon dioxide
between atmosphere and land biosphere.

Atmospheric carbon dioxide

Gross
Primary Respiration Respiration
Production and Decay
-

----------------------------------------
* D) .

CARBON M CARBON

Litter
Production}
-

: VEGETATION : SOIL
E Decay .
3 LABILE STRUCTURAL -
E NITROGEN NITROGEN Litter = HEROSE
. Exchange Production
Uptake
Exchange

Nitrogen INORGANIC

NPP = NET PRIMARY PRODUCTION

= GPP (PHOTOSYNTHESIS) - PLANT RESPIRATION
NER=NE LEFCOSYSTEM PRODUCTION

= NPP - SOIL RESPIRATION & DECAY

Nitrogen
Input V] Lost

Va



LAND CARBON BUDGET: NET PRIMARY PRODUCTION (NPP)
(NPP = PHOTOSYNTHESIS - PLANT RESPIRATION )
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| mage removed due to copyright restrictions.
Global map of net primary production,
ranging from O to 1550 gC/m2/yr, source
unknown.
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Terrestrial Ecosystem Models address
Impacts of Climate Change &
Air Pollution on Carbon Cycle
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B Atrocpherc N Deposiion Image removed due to copyright
1 restrictions. Global map showing net
0 carbon flux, with values from -30 to 90
2 gC/m2/yr.
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Year
e.g. Carbon Accumulation e.g. Net Carbon Flux (NEP
in Global Ecosystems =NPP -Soil Resp. & Decay)
since 1900 (PgC) into Natural Ecosystems

during the 1990s (TEM 6.0)
Ref: Melillo et al, 2005



Model Projections of Carbon Uptake
by Land and Ocean (GtC/year)*
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Courtesy of the Intergovernmental Panel on Climate Change. Used with permission.
* Source: IPCC, Climate Change 2001: The Scientific Basis, Chap. 3 (Prentice et al., 2001)



MUST INCLUDE THE INTERACTIONS
BETWEEN ECOSYSTEMS AND CLIMATE THROUGH
TRACE GAS EXCHANGE

b

Both cases emissions
@ase about 30% with
a 2.6°C global warming
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Images removed due to copyright restrictions. See Figure 33 in:

Prinn, R., et a. "Integrated Global System Model for Climate
Policy Assessment: Feedbacks and Sensitivity Studies." Climatic
Change 41, no. 3/4 (1999): 469-546.

e.d. Predicted
Increases in natural
emissions of N,O and

CH, driven b

climate & soil C
changes

Shown are emissions of
N,O and CH, in the
Natural Emissions M odel
(NEM) runsdriven by the
indicated climate model
runsand (for N,O) also by
theindicated climate plus
Terrestrial Ecosystem
Model (TEM) runs
(the latter denoted by the
addition of C; totherun
designation).

Ref: Prinn et al, Climatic
Change, 1999
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CLIMATE CHANGE IMPACTS
~ ON ECOSYSTEMS

Distribution of Plant Communities
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National Assessment Synthesis Team, Climate Change Impacts on the United States: The Potential Consequences
of Climate Variability and Change (Washington, DC: U.S. Global Change Research Program, 2000). Courtesy of The
U.S. Global Change Research Program (USGCRP). Used with permission.



B-MODELS OF THE EARTH SYSTEM ARE
‘NEEDED TO FORECAST CLIMATE?

/ MUCH COMPLEXITY ISNEEDED?




TO FORECAST CLIMATE CHANGE
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Figure 2. Schematic of the ocean model component of the IGSMZ,




Biogeophysical and Biogeochemical Pathways in the IG5M Global Land System [(GLS)
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Figure 3. Schematic of coupling between the atmosgheric model (which alse includes linkages to
the air chemistry and ocean models) and the land model components of the IGSM2, also shiown
are the linkages between the biogeophysical [CLM) and biogeochemical [TEM] subcomponents.
All green shaded boxes indicate fluxes/storage that are explicitly calculated/tracked by this
Global Land System [GLS). The blue shaded boxes indicate those quantities that are calculated
by the atrmosphernc model of the 1IGSM2.



IGSM VERSION 1 REFERENCE FORECAST FOR EMISSIOI%“*
(NO EXPLICIT POLICY) ‘

Images removed due to copyright restrictions. See Figure 15 in:

Prinn, R., et a. "Integrated Global System Model for Climate
Policy Assessment: Feedbacks and Sensitivity Studies.” Climatic
Change 41, no. 3/4 (1999): 469-546.

Annual EPPA (solid lines) and natural (dotted lines) emissions for the Reference Run.
Source: Prinn et al., Climatic Change, 41, 469-546, 1999



IGSM 1 REFERENCE FORECASTS (NO EXPLICIT POLIC!‘E

b

Images removed due to copyright restrictions. See Figure 16 in:

Prinn, R., et a. "Integrated Global System Model for Climate
Policy Assessment: Feedbacks and Sensitivity Studies.” Climatic
Change 41, no. 3/4 (1999): 469-546.

- 1
Changes (A S) are from 1990 levels
Reference: Prinn, et al., Climatic Change, 41, 469-546, 1999
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NOTE
JCE EFFECT
OF
AEROSOL
COOLING

Images removed due to copyright restrictions. See Figure 19 in:

Prinn, R., et a. "Integrated Global System Model for Climate
Policy Assessment: Feedbacks and Sensitivity Studies.” Climatic
Change 41, no. 3/4 (1999): 469-546.

Reference: Prinn, et al., Climatic Change, 41, 469-546, 1999
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POLES WARM FASTER THAN EQUATOR! NOTE
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Images removed due to copyright restrictions. See Figure 20 in: HEAT

Prinn, R., et a. "Integrated Global System Model for Climate TRANSPORT
Policy Assessment: Feedbacks and Sensitivity Studies.” Climatic
Change 41, no. 3/4 (1999): 469-546.

Reference: Prinn, et al., Climatic Change, 41, 469-546, 1999



WHAT IS THE
ADVANTAGE
OF A POLICY
ABILIZES

(550 ppm)?
*Compare:
2ference (RRR,

0. policy, with
J ppm in 2100)
. and
550 ppm Stabilization
(SRR, 530 ppm in
2100)
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Figure by MIT OpenCourseWare.




Temperature increase in C

Sea level rise in cm

Increase of global mean temperature (C)
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Figure by MIT OpenCourseWare.
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Figure 4. Emissions projections for greenhouse gases,
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Figure 11. Changes in global mean annual Figure 12. Carbon uptake by ocean (blue) and
mean surface air temperature in terrestral ecosystemn (green) in the
simulations with IG5M1 (dashed blue line) simulations with the IGSM2.2 (solid lines)
and IG5M2.2 (black line). Observations and IG5M1 {dashed lines).

(dotted red line) are from Jones [2003),
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Figure 13. Natural emissions of CH, and K,0 in the simulations with the IGSM1 and IG5M2.2,
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Figure 14. Atmospheric concentrations of CO, (black), CH, (green) and N;O (red) in the simulations
with the IG5M2.2 (solid lines) and IGSM1 (dashed lines),
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Figure 17. Changes in global mean annual mean surface air temperature in simulations with

IG5M Tidashed blue line], 1G5M2.2 {solid black line], and 1IGSM2.2 without including the radiative
effect of black carbon (dotted red line). I
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Figure 18. Sea leved rise due to thermal Figure 19. Sea-ice cover change (from 19%0) in
expansion in simulations with 1G5M1 simulations with 1G5M1 (dashed blue line} F

[dashed blue) and 1G5M2.2 (solid line). and 1G5M2.2 (solid black line).
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Figure 20. Changes in zonally averaged (a) surface air temperature, (b) precipitation, (c) surface
albeda, and (d} evaporation. Difference between decadal means 2091-2100 and 1981-1990.




	e.g. Net Carbon Flux (NEP =NPP -Soil Resp. & Decay) into Natural Ecosystems during the 1990s (TEM 6.0)



