Addressing Alternative Explanations: Multiple Regression

17.871 Spring 2012

Did Clinton hurt Gore example

- Did Clinton hurt Gore in the 2000 election?
 - □ Treatment is not liking Bill Clinton

Bivariate regression of Gore thermometer on Clinton thermometer

Did Clinton hurt Gore example

- What alternative explanations would you need to address?
- Nonrandom selection into the treatment group (disliking Clinton) from many sources
- Let's address one source: party identification
- How could we do this?
 - Matching: compare Democrats who like or don't like Clinton; do the same for Republicans and independents
 - □ Multivariate regression: control for partisanship statistically
 - Also called multiple regression, Ordinary Least Squares (OLS)
 - Presentation below is intuitive

Democratic picture

Gore thermometer

Independent picture

Republican picture

Combined data picture

Gore thermometer

Combined data picture with regression: bias!

Combined data picture with "true" regression lines overlaid

Tempting yet wrong normalizations

Subtract the Gore therm. from the avg. Gore therm. score

Subtract the Clinton therm. from the avg. Clinton therm. score

Clinton thermometer

3D Relationship

3D Linear Relationship

3D Relationship: Clinton

Ŋė.

3D Relationship: party Dem Ind

15

The Linear Relationship between Three Variables

Gore thermometer Clinton thermometer
$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \mathcal{E}_i$$

The method of least squares (again)

Pick β_0 , β_1 , and β_2 to minimize

$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 \text{ or }$$

$$\sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i - \beta_2 X_2)^2$$

100

The Slope Coefficients

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (\overline{Y} - Y_{i})(\overline{X}_{1} - X_{1,i})}{\sum_{i=1}^{n} (\overline{X}_{1} - X_{1,i})^{2}} - \hat{\beta}_{2} \frac{\sum_{i=1}^{n} (\overline{X}_{1} - X_{1,i})(\overline{X}_{2} - X_{2,i})}{\sum_{i=1}^{n} (\overline{X}_{1} - X_{1,i})^{2}} \text{ and }$$

$$\hat{\beta}_{2} = \frac{\sum_{i=1}^{n} (\overline{Y} - Y_{i})(\overline{X}_{2} - X_{1,i})}{\sum_{i=1}^{n} (\overline{X}_{2} - X_{2,i})} - \hat{\beta}_{1} \frac{\sum_{i=1}^{n} (\overline{X}_{1} - X_{1,i})(\overline{X}_{2} - X_{2,i})}{\sum_{i=1}^{n} (\overline{X}_{2} - X_{2,i})^{2}}$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1} \overline{X}_{1} - \hat{\beta}_{2} \overline{X}_{2}$$

X₁ is Clinton thermometer, X₂ is PID, and Y is Gore thermometer

ŊΑ

The Slope Coefficients More Simply

$$\hat{\beta}_{1} = \frac{\text{cov}(X_{1}, Y)}{\text{var}(X_{1})} - \hat{\beta}_{2} \frac{\text{cov}(X_{1}, X_{2})}{\text{var}(X_{1})} \text{ and }$$

$$\hat{\beta}_{2} = \frac{\text{cov}(X_{2}, Y)}{\text{var}(X_{2})} - \hat{\beta}_{1} \frac{\text{cov}(X_{1}, X_{2})}{\text{var}(X_{2})}$$

X₁ is Clinton thermometer, X₂ is PID, and Y is Gore thermometer

The Matrix form

y ₁
y ₂
y _n

1	X _{1,1}	X _{2,1}	 $X_{k,1}$
1	X _{1,2}	X _{2,2}	 X _{k,2}
1			
1	X _{1,n}	X _{2,n}	 X _{k,n}

$$\beta = (X'X)^{-1}X'y$$

Multivariate slope coefficients

Clinton effect (on Gore) in bivariate (*B*) regression

Are Gore and Party ID related?

Bivariate estimate:

$$\hat{\beta}_1^B = \frac{\text{cov}(X_1, Y)}{\text{var}(X_1)} \text{ vs.}$$

Multivariate estimate:

$$\hat{\beta}_{1}^{M} = \frac{\text{cov}(X_{1}, Y)}{\text{var}(X_{1})} - \hat{\beta}_{2}^{M} \frac{\text{cov}(X_{1}, X_{2})}{\text{var}(X_{1})}$$

Clinton effect (on Gore) in multivariate (*M*) regression Are Clinton and Party ID related?

When does
$$\hat{\beta}_1^B = \hat{\beta}_1^M$$
? Obviously, when $\hat{\beta}_2^M \frac{\text{cov}(X_1, X_2)}{\text{var}(X_1)} = 0$

X₁ is Clinton thermometer, X₂ is PID, and Y is Gore thermometer

The Output

. reg gore clinton party3

Source	SS	df	MS		Number of obs F(2, 1742)	= 1745 = 1048.04
Model Residual 	629261.91 522964.934 1152226.84	1742 300.	209492 .68053		F(2, 1742) Prob. > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.5461
gore	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
clinton party3 _cons	.5122875 5.770523 28.6299	.0175952 .5594846 1.025472	29.12 10.31 27.92	0.000 0.000 0.000	.4777776 4.673191 26.61862	.5467975 6.867856 30.64119

Interpretation of clinton effect: Holding constant party identification, a one-point increase in the Clinton feeling thermometer is associated with a .51 increase in the Gore thermometer.

M

Separate regressions

	(1)	(2)	(3)
Intercept	23.1	55.9	28.6
Clinton	0.62		0.51
Party		15.7	5.8

$$\hat{\beta}_{1} = \frac{\text{cov}(X_{1}, Y)}{\text{var}(X_{1})} - \hat{\beta}_{2} \frac{\text{cov}(X_{1}, X_{2})}{\text{var}(X_{1})} \text{ and }$$

$$\hat{\beta}_{2} = \frac{\text{cov}(X_{2}, Y)}{\text{var}(X_{2})} - \hat{\beta}_{1} \frac{\text{cov}(X_{1}, X_{2})}{\text{var}(X_{2})}$$

Why did the Clinton Coefficient change from 0.62 to 0.51

. corr gore clinton party, cov (obs=1745)

	gore	clinton	party3
gore clinton	660.681 549.993	883.182	
party3	13.7008	16.905	.8735

The Calculations

$$\hat{\beta}_{1}^{B} = \frac{\text{cov}(gore, clinton)}{\text{var}(clinton)} = \frac{549.993}{883.182} = 0.6227$$

$$\hat{\beta}_{1}^{M} = \frac{\text{cov}(gore, clinton)}{\text{var}(clinton)} - \hat{\beta}_{2}^{M} \frac{\text{cov}(clinton, party)}{\text{var}(clinton)}$$

$$=\frac{549.993}{883.182} - 5.7705 \frac{16.905}{883.182}$$

$$= 0.6227 - 0.1105$$

$$= 0.5122$$

M

Another way of thinking about this

Rewrite

$$\hat{\beta}_{1}^{M} = \frac{\text{cov}(gore, clinton)}{\text{var}(clinton)} - \hat{\beta}_{2}^{M} \frac{\text{cov}(clinton, party)}{\text{var}(clinton)}$$

as

$$\frac{\operatorname{cov}(gore, clinton)}{\operatorname{var}(clinton)} = \hat{\beta}_{\uparrow}^{M} + \hat{\beta}_{2}^{M} \frac{\operatorname{cov}(clinton, party)}{\operatorname{var}(clinton)}$$

Total effect = Direct effect + indirect effect

The Total Effect of the Clinton thermometer on the Gore thermometer (.61) can be Broken down into a direct effect of .51, plus an indirect effect (though party) of .11

Drinking and Greek Life Example

- Why is there a correlation between living in a fraternity/sorority house and drinking?
 - ☐ Greek organizations often emphasize social gatherings that have alcohol. The effect is being in the Greek organization itself, not the house.
 - ☐ There's something about the House environment itself.

	Co. When did you last	maye a utilik (utat is illote	man just a rew sip	/wy :
	 I have never had 	a drink Skip to C22 (p	age 10)	
	Not in the past y	ear -> Skip to C22 (page	10)	
	○ More than 30 da	ys ago, but in the past year	→ Skip to C17 (p	age 8)
	More than a wee	k ago, but in the past 30 day	s Go to C9	
	○ Within the last w	eek 🖚 Go to C9		
C9.	On how many occasions have you	had a drink of alcohol in the pas	t 30 days? (Choose or	ne answer.)
į,	Old not drink in the last 30 days	4 O 6 to 9 occasions	é	20 to 39 occasions
gr.	1 to 2 occasions	← ○ 10 to 19 occasions	7.	0 40 or more occasions
3	○ 3 to 5 occasions	/		

CB. When did you lest have a drink (that is more than just a few sine)?

: HFKVOHU + HQU\ &ROOHU H \$OFRKRO6VMG\ + DUYDUG 6FKRRORI 3XEOF + HDOMK

+ DUYDUG 6FKRRORI 3XEQF + HDQMK \$QQUU KW UHVHUYHG 7KLV FRQMAQWLV H[FQXGHG IURP RXU&UHDWLYH &RP P RQV QFHQVH) RUP RUH LQIRUP DWLRQ VHH KWWS RFZ P LWHGX IDLLWVH

M

- . infix age 10-11 residence 16 greek 24 screen 102 timespast30 103 howmuchpast30 104 gpa 278-279 studying 281 timeshs 325 howmuchhs 326 socializing 283 stwgt_99 475-493 weight99 494-512 using da3818.dat,clear (14138 observations read)
- . recode timespast30 timeshs (1=0) (2=1.5) (3=4) (4=7.5)
 (5=14.5) (6=29.5) (7=45)
 (timespast30: 6571 changes made)
 (timeshs: 10272 changes made)
- . replace timespast30=0 if screen<=3
 (4631 real changes made)</pre>

M

. tab timespast30

timespast30	Freq.	Percent	Cum.
0 1.5 4 7.5 14.5 29.5	+	33.37 19.64 19.03 13.30 11.82 2.51	33.37 53.01 72.04 85.34 97.17 99.68
45	45	0.32	100.00
Total	+ 13,939	100.00	

Key explanatory variables

- Live in fraternity/sorority house
 - □ Indicator variable (dummy variable)
 - □ Coded 1 if live in, 0 otherwise
- Member of fraternity/sorority
 - □ Indicator variable (dummy variable)
 - □ Coded 1 if member, 0 otherwise

Three Regressions

Dependent variable: number of times drinking in past 30 days				
Live in frat/sor house (indicator variable)	4.44 (0.35)		2.26 (0.38)	
Member of frat/sor (indicator variable)		2.88 (0.16)	2.44 (0.18)	
Intercept	4.54 (0.56)	4.27 (0.059)	4.27 (0.059)	
S.E.R.	6.49	6.44	6.44	
R2	.011	.023	.025	
N	13,876	13,876	13,876	

What is the substantive interpretation of the coefficients?

Note: Standard errors in parentheses. Corr. Between living in frat/sor house and being a member of a Greek organization is .42

The Picture

100

Accounting for the total effect

$$\hat{\beta}_{1}^{B} = \hat{\beta}_{1}^{M} + \hat{\beta}_{2}^{M} \gamma_{21}$$

Total effect = Direct effect + indirect effect

Accounting for the effects of frat house living and Greek membership on drinking

From bivariate regressions

From multiple regressions

accounting identity: T=D+I

Effect	Total	Direct	Indirect
Member of	2.88	2.44	0.44
Greek org.		(85%)	(15%)
Live in frat/	4.44	2.26	2.18
sor. house		(51%)	(49%)

MIT OpenCourseWare http://ocw.mit.edu

17.871 Political Science Laboratory Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.