Introduction to Descriptive Statistics

17.871 Spring 2012

Key measures

Describing data

	Moment	Non-mean based measure	
Center	Mean	Mode, median	
Spread	Variance (standard deviation)	Range, Interquartile range	
Skew	Skewness		
Peaked	Kurtosis		

Key distinction

Population vs. Sample Notation

Population	VS.	Sample
Greeks		Romans
μ, σ, β		s, b

100

Mean

$$\frac{\sum_{i=1}^{n} x_i}{n} \equiv \mu \equiv X$$

Variance, Standard Deviation of a Population

$$\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{n} \equiv \sigma^2,$$

$$\sqrt{\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{n}} \equiv \sigma$$

Ŋ.

Variance, S.D. of a Sample

$$\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{(n-1)} \equiv s^2,$$

Degrees of freedom

$$\sqrt{\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{n-1}} \equiv s$$

M

Binary data

$$\overline{X} = prob(X) = 1 = \text{proportion of time } x = 1$$

$$s_x^2 = \overline{x}(1-\overline{x}) \Longrightarrow s_x = \sqrt{\overline{x}(1-\overline{x})}$$

Example of this, using today's NBC News/Marist Poll in Michigan

Candidate	Pct.
Santorum	35
Romney	37
Paul	13
Gingrich	8
[Unaccounted for]	[7]

- gen santorum = 1 if candidate=="Santorum"
- replace santorum = 0 if candidate~="Santorum"
- the command summ santorum produces
- Mean = .35
- Var = .35(1-.35)=.2275
- S.d. = . 4769696

Normal distribution example

 $Image\ by\ MIT\ Open Course Ware.$

 $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)/2\sigma^2}$

- IQ
- SAT
- Height
- "No skew"
- "Zero skew"
- Symmetrical
- Mean = median = mode

Skewness Asymmetrical distribution

- Income
- Contribution to candidates
- Populations of countries
- "Residual vote" rates
- "Positive skew"
- "Right skew"

Distribution of the average \$\$ of dividends/tax return (in K's)

Mitsubishi i-MiEV (which is supposed to be all electric)

Fuel economy of cars for sale in the US

Skewness Asymmetrical distribution

GPA of MIT students

- "Negative skew"
- "Left skew"

Placement of Republican Party on 100-point scale

Skewness

M

Placement of Republican Party on 100-point scale

Mean = 26.8; median = 25; mode = 25

Kurtosis

Image by MIT OpenCourseWare.

piace on ideological scale - democratic party				
7				
89				
Density .06	1			
Q 40.	1 1.			
0	-10.40			

	Mean	s.d.	Skew.	Kurt.
Self- placement	55.1	26.4	-0.14	2.21
Rep. pty.	26.8	21.2	0.87	3.59
Dem. pty	74.7	21.8	-1.18	4.29

Source: Cooperative Congressional Election Study, 2008

Normal distribution

Image by MIT OpenCourseWare.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)/2\sigma^2}$$

- Skewness = 0
- Kurtosis = 3

M

More words about the normal curve

Image by MIT OpenCourseWare.

The z-score or the "standardized score"

$$z = \frac{x-x}{\sigma_x}$$

Commands in STATA for univariate statistics

- <u>sum</u>marize *varname*
- <u>sum</u>marize *varname*, <u>det</u>ail
- histogram varname, bin() start() width() density/fraction/frequency normal
- graph box varnames
- tabulate

Example of Florida voters

- Question: does the age of voters vary by race?
- Combine Florida voter extract files, 2008
- gen new_birth_date=date(birth_date,"MDY")
- gen birth_year=year(new_b)
- gen age= 2010-birth_year

Look at distribution of birth year

100

Explore age by voting mode

. table race if birth_year>1900,c(mean age)

race	mean(age)
1	45.61229
2	42.89916
3	42.6952
4	45.09718
5	52.08628
6	44.77392
9	40.86704

Graph birth year

. hist age if birth_year>1900

(bin=71, start=9, width=1.3802817)

Divide into "bins" so that each bar represents 1 year

. hist age if birth_year>1900,width(1)

Add ticks at 10-year intervals

histogram totalscore, width(1) xlabel(-.2 (.1) 1)

Superimpose the normal curve

(with the same mean and s.d. as the empirical distribution)

hist age if birth_year>1900,wid(1) xlabel(20 (10) 100) normal

. summ age if birth_year>1900,det

$\overline{}$	\sim	\sim
$\overline{}$	(1	
u	\sim	\sim

	Percentiles	Smallest		
1%	18	9		
5%	21	16		
10%	24	16	Obs	12612114
25%	34	16	Sum of Wgt.	12612114
50%	48		Mean	49.47549
		Largest	Std. Dev.	19.01049
75%	63	107		
90%	77	107	Variance	361.3986
95%	83	107	Skewness	. 2629496
99%	91	107	Kurtosis	2.222442

Histograms by race

```
hist age if birth_year>1900&race>=3&race<=5,wid(1) xlabel(20 (10) 100) normal by(race)
```

3 = Black

4 = Hispanic

5 = White

Main issues with histograms

- Proper level of aggregation
- Non-regular data categories

Draw the previous graph with a box plot

graph box age if birth_year>1900

Draw the box plots for the different races

graph box age if birth_year>1900&race>=3&race<=5,by(race)</pre>

3 = Black

4 = Hispanic

5 = White

Draw the box plots for the different races using "over" option

graph box age if birth_year>1900&race>=3&race<=5,over(race)</pre>

3 = Black

4 = Hispanic

5 = White

A note about histograms with unnatural categories

From the Current Population Survey (2000), Voter and Registration Survey

How long (have you/has name) lived at this address?

- -9 No Response
- -3 Refused
- -2 Don't know
- -1 Not in universe
- 1 Less than 1 month
- 2 1-6 months
- 3 7-11 months
- 4 1-2 years
- 5 3-4 years
- 6 5 years or longer

M

Solution, Ste p₁ Map artificial category onto "natural" midpoint

- -9 No Response → missing
- -3 Refused → missing
- -2 Don't know → missing
- -1 Not in universe → missing
- 1 Less than 1 month \rightarrow 1/24 = 0.042
- 2 1-6 months \rightarrow 3.5/12 = 0.29
- 3 7-11 months \rightarrow 9/12 = 0.75
- 4 1-2 years \rightarrow 1.5
- 5 3-4 years \rightarrow 3.5
- 6 5 years or longer → 10 (arbitrary)

recode live_length (min/-1 = .)(1 = .042)(2 = .29)(3 = .75)(4 = 1.5)(5 = 3.5)(6 = 10)

Graph of recoded data

histogram longevity, fraction

Density plot of data

100

Density plot template

Category	Fraction	X-min	X-max	X-length	Height (density)
< 1 mo.	.0156	0	1/12	.082	.19*
1-6 mo.	.0909	1/12	1/2	.417	.22
7-11 mo.	.0430	1/2	1	.500	.09
1-2 yr.	.1529	1	2	1	.15
3-4 yr.	.1404	2	4	2	.07
5+ yr.	.5571	4	15	11	.05

^{* =} **.**0156/**.**082

Three words about pie charts: don't use them

So, what's wrong with them

- For non-time series data, hard to get a comparison among groups; the eye is very bad in judging relative size of circle slices
- For time series, data, hard to grasp crosstime comparisons

Some words about graphical presentation

- Aspects of graphical integrity (following Edward Tufte, Visual Display of Quantitative Information)
 - Main point should be readily apparent
 - □ Show as much data as possible
 - Write clear labels on the graph
 - □ Show data variation, not design variation

MIT OpenCourseWare http://ocw.mit.edu

17.871 Political Science Laboratory Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.