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1.7 Orbits in axisymmetric potentials 

We have seen above that empirically, most galaxies are not spherically symmetric, but rather have 
flattened disks or ellipsoidal shapes. For many of these more general potentials, azimuthal symmetry 
and also up-down symmetry (z � −z) are still fine approximations. Thus we can write the potential 
as Λ(R, θ, z) = Λ(R, z ). From the formula for the gradient in cylindrical coordinates, we get the | |

¨ three pieces of the vector equation ξr = −ξ�Λ, 

ˆ ¨ θ2 eR : R − R ˙ = 
σΛ −
σR 

d 
êθ : (R2θ̇) = 0 

dt
σΛ 

êz : z̈ = . (1.89)−
σz 

Just as in the spherically symmetric case, we can define an effective potential Λeff for a given angular 
momentum about the z-axis, Lz = R θ̇2 , 

Λeff = Λ + 
L2 

z 

2R2 
. (1.90) 

The equation of motion in the êR direction is 

¨ R = − 
σΛeff 

σR 
, (1.91) 

(Continued on next page.) 
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Figure 1.15: Contours of constant of constant Λeff which are 
also bunding curves for orbits with energy E. The dot indi-

R 
cates the “parent” circular orbit, for which Λeff is a minimum. 
As E increases the bounding curves grow larger. 

z z 
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Figure 1.16: Left: A circular orbit has been perturbed in the R direction. Right: A circular orbit 
has been perturbed in the z direction. 

the equation of motion in the z direction is 

σΛeff 
z̈ = , (1.92)− 

σz 

and the energy equation is 

E = 
1
(Ṙ2 + ż 2) + Λeff . (1.93)

2 

If we draw curves of constant effective potential (Fig. 1.15), we see that for a given Lz the 
minimum effective energy is at a point Rg on the R axis. A particle with exactly this minimum 
energy will be in circular orbit, with orbital frequency � such that 

1 σΛ 
�2 = . (1.94)

R σR 

We can expand the effective potential in the vicinity of this point, 

1 
Λeff � Λ(Rg , 0) + 

σ2Λeff 

� 

x 2 +
1 σ2Λeff 

� 
2 (1.95)

2 σR2 2 σz2 
z , 

(Rg ,0) (Rg ,0) 

where we have defined a radial displacement, x ≥ R − Rg � Rg . 

If a test particle in circular orbit is given a small perturbation in the radial direction, (Fig. 1.16), 
it obeys the equation of motion 

ẍ + η2 x = 0 where (1.96) 
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Figure 1.17: Bounding curves for two orbits with the same 
R values of E and Lz . Evidently there is some third conserved 

quantity that makes for distinct bounding curves. 

σ2Λeff 

� 

η2 . (1.97)≥ 
σR2 

(Rg ,0) 

defines the epicyclic frequency, η. 

Similarly giving a particle given a small perturbation perpendicular to the orbital plane (Fig. 
1.16) will obey the equation of motion 

z̈ + �2 z = 0 where, (1.98) 

σ2Λeff 

� 

�2 (1.99)≥ 
σz2 

(Rg ,0) 

defines the vertical frequency �. 

As the amplitudes of the the perturbations increase the expansion above is no longer strictly 
correct, but the character of the two orbits remains the same. In one case the particle oscillates 
within the orbital plane, while in the other the particle traces out an arc in the (R, z), meridional 
plane. Notice that the epicyclic, vertical and orbital frequencies need not be the same – in general 
they are different. Only for the Kepler potential and for the spherical harmonic potential are they 
identical. 

More generally, a particle given an arbitrary perturbation must be contained within the contour 
Λeff = E in Figure 1.15. But when a circular orbit is given an arbitrary perturbation, the orbit does 
not fill the allowed region. Rather it produces a Lissajou figure contained within a box-shaped region. 
(Fig. 1.17). Notice that two different box-shaped regions can have the same bounding energy. This 
suggests that some additional conserved quantity, another integral of the motion (beyond energy and 
z-axis angular momentum), denies it access to the full allowed region. 

To study the dimensionality of these orbits, one constructs a Poincare surface of section which 
reduces the six-dimensional phase space to something more manageable. The construction proceeds 
as follows: 

a) From azimuthal symmetry, ignore θ and θ̇, giving 4-D trajectories in (R, Ṙ, z, ż). 

b) Use conservation of energy to give ż = ż(R, Ṙ, z, E) 

c) Take a cross-section of the orbits, plotting a point on the (R, Ṙ) plane every time the orbit 
crosses the plane defined by z = 0 with ż > 0. 
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R 

Figure 1.18: A “surface of section”. The allowed region is 
R bounded by the solid curve. The dashes indicate where the 

particle intersects the z = 0 plane. 

d) The confinement of trajectories to 1-D invariant curves in the (R, Ṙ) plane suggests they will 
occupy 2-D surfaces in (R, Ṙ, z, ż) space and 3-D regions within the full 6-D phase space and 
thus the existence of an additional integral of the motion. 

An example of such a Poincare surface of section is shown in Figure 1.18. 

For potentials that are nearly spherical, the third integral is something like, but not exactly, 
the total angular momentum. For orbits that stay close to the equatorial plane, the third integral 
is something like, but not exactly, the energy in the z direction. More generally, while one may 
demonstrate the existence of a third integral using Poincare’s method, it cannot be written in closed 
form5 . 

1.7.1 nearly circular orbits: the epicyclic approximation 

For many axisymmetric potentials, we are interested primarily in trajectories that are nearly circular 
with an average orbital frequency �(R) at each radius R. This circular orbit acts as a guiding center 
for the perturbed orbit which we want to study. Near this equilibrium orbit, we can expand the 
effective potential around the guiding radius Rg and the equatorial plane z = 0, 

1 
Λeff � Λ(Rg , 0) + 

σ2Λeff 

� 

x 2 +
1 σ2Λeff 

� 

z 2 . (1.100)
2 σR2 2 σz2 

(Rg ,0) (Rg ,0) 

We pay attention here only to motion in the plane, which decouples from the vertical motion, and 
henceforth take z to be identically zero. As before we take the x direction to be radial and the 
y direction to be positive in the direction of rotation. As noted in the previous section, small 
osciallations are governed by the harmonic equation 

ẍ + η2 x = 0 (1.101) 

and η2, defined by equation (1.97), is then 

� 
σ2Λ 

� 
3L2 

� �

d 
η2 = + z = R �2 + 4�2 . (1.102)

σR2 R4 dRgRg Rg 

5An interesting counterexample is the tri-axial Stäckel potential where all three integrals of motion can be written 
in closed form. 
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slower guiding center 
Figure 1.19: Stars executing epicycles around guid­
ing centers or circular orbits. The inner orbit has 

faster guiding center a higher orbital frequency. 

Recall from equation (1.15) the relation between circular velocity and potential gives the orbital 
frequency as 

1 σΛ L2 
z�2 = = . (1.103)

R σR R4 

The solutions to (1.101) are harmonic oscillations of the form 

x(t) = X cos(ηt + �), (1.104) 

where � is a phase determined by initial conditions. 

But what is happening in the θ direction as the particle excutes radial oscillations? The angular 
position in the orbit can be solved for using conservation of angular momentum and the fact that 
that x � Rg , 

Lz 2x 
θ̇ = 

Lz 
= ⎡2 � �g 1 − . (1.105)

R2 
R2 1 + x Rg

Rg 

From here we integrate to get 

2�g
θ(t) = �g t + θo − X sin(ηt + �). (1.106)

ηRg 

It is useful to define y as the distance away from the guiding circular orbit in the angular direction: 

2�g
y ≥ Rg (θ − θg ) = − X sin(ηt + �) = Y sin(ηt + �). (1.107)

η 

As both the x and y coordinates execute harmonic oscillations with the same frequency, η, the 
trajectories trace out ellipses, called epicycles around the guiding center6 . A few helpful relations 
can be derived without too much effort: 

1 X η 
< = < 1, (1.108)

2 Y 2�g 

where the lower bound (1/2) corresponds to a Keplerian potential and the upper bound (1) corre­
sponds to a harmonic potential. Averaging over an epicycle (ηt = 0 � 2ψ), we find 

y 4�2√ ̇ 2 ⇔orbit = g . (1.109) 
x η2√ ̇ 2 ⇔orbit 

6Ptolemy is unjustly ridiculed for having introduced epicycles to explain planetary motions 2000 years ago. Epicycles 
do indeed improve upon circular motion. What Ptolemy failed to realize was that for planetary motion these epicycles 
are ellipses rather than circles. 
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R 

d 
Figure 1.20: A star at distance d from the sun observed in 
the plane of the Milky Way at galactic longitude l. The sun 
is located a distance R∞ from the origin at the center of the 
galaxy. 

However, if one takes the average over a volume of space encompassing many orbits instead of 
just averaging over a single orbit (something we postpone discussing until our treatment of Jeans’ 
equations), one finds the exact opposite: 

y η2√ ˙2 ⇔vol = . (1.110) 
x 4�2√ ˙ 2 ⇔vol g 

A qualitative understanding for this can be seen in Figure 1.19, where the outer, slower guiding center 
overlaps with a faster inner guiding center but their epicyclic velocities are in opposite directions. 

In the early part of this century, Jan Oort interpreted nearby stellar radial velocity and transverse 
proper motion measurements as the result of differential rotation, giving � as a function of R. From 
the point of view of an observer moving on a circular orbit at distance R from the center of the 
galaxy, a star at a distance d and galactic longitude l (see Figure 1.20) will have a line-of-sight radial 
velocity given by 

vlos = d(A sin 2l) (1.111) 

and a transverse velocity of 

vT = d(A cos 2l + B), (1.112) 

which is actually measured in terms of a proper motion (typically fractions of an arcsecond per yr), 

µ = vT /d = A cos 2l + B. (1.113) 

Here A and B are the Oort constants defined as 

1 d� 
R (1.114)A ≥ − 

2 dR 

and 
1 d� 
R + �). (1.115)B ≥ −(

2 dR 

From our definitions of the epicyclic frequency, equation (1.97) and Oort’s constants we derive 

η2 = −4B(A − B). (1.116) 
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Figure 1.21: The black ellipses are equipotentials. The blue 
horizontal line is the radial orbit that is the parent of the box 
orbits. The red ellipse is the closed orbit that is the parent 
of the tube orbits. 




