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1.6 Orbits in spherical potentials 

Our method for building galaxy models (often called “Schwarzschild’s method,” after Martin Schwarzschild, 
son of the general relativist Karl) requires that we construct an orbit library in which we store the 
“footprints” or probability densities of a representative set of orbits. These are then superposed to 
construct the luminosity distribution. Since orbits play such a major role, we discuss them in some 
detail 

We begin by calculating orbits for the simplest systems mentioned above, those with spherically 
symmetric potentials Λ = Λ(r). It is easy to get lost in the details of the calculation, so we start 
with an outline of the procedure we will follow: 

a) Discover that the vector angular momentum is conserved and reduce the dimensionality of the

problem to motion in a plane.


b) Split the vector equation of motion into two scalar equations of motion. 

c) Change the independent variable from time to angle. 

d) Change the dependent variable from radius to inverse radius. 

e) Multiply by the derivative of inverse radius with respect to angle and integrate, giving a dif­
ferential equation for the square of the derivative of inverse radius with respect to angle. The 
constant of integration is proportional to the energy per unit mass divided by the angular 
momentum squared. 

f) Solve the differential equation for inverse radius as a function of angle. 

The experience of seeing this for the first time is not unlike that of an undergraduate being led from 
one side of the campus to the other via basements and tunnels. 

We begin with the central force equation (where we adopt the convention of expressing force ξF, 
energy E, and angular momentum ξL per unit mass) 

d2 

ξr = − ξ F = F (r)ˆ�Λ(r) = ξ er . (1.60)
dt2 

Combined with the angular momentum definition 

ξ r v, (1.61)L ≥ ξ × ξ

gives the conservation of angular momentum in central-force systems: 

d ξ d 
� 

dξr dξr dξr d2ξr 
= 0,L = ξr (1.62)

dt dt 
× 

dt 
= 

dt 
× 

dt 
+ ξr × 

dt2 

so we immediately see that the orbit will be constrained to a plane perpendicular to ξL. Within this 
plane we adopt coordinates (r, �) with 

d� 
L = r 2 . (1.63)

dt 
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The equations of motion in this new coordinate system are 

ξr = rêr 

d 
ξr = rˆ e�˙er + r�̇ˆ

dt

d2


¨ ξr = (¨ ˙ er + (2 ̇r�̇ + r�)ˆr − r�2)ˆ e� , (1.64)
dt2 

where we have used the relations 

d d 
ˆ e� and ˆ �ˆer = �̇ˆ e� = − ˙er . (1.65)

dt dt 

Separating the centeral force equation (1.60) into two scalar equations of motion gives 

r̈ − r�̇2 = F (r) (1.66) 

and 
¨ 2 ̇r�̇ + r� = 0. (1.67) 

We change the both the dependent and independent variables in the radial equation, to � and u ≥ 1/r 
respectively. We then have 

d L d 
= (1.68)

dt r2 d� 

from equation (1.63) and 
1 d d 

r = u . (1.69) 
r2 d� 

− 
d� 

The radial equation (1.66) becomes 
d2u F (u)

+ u = . (1.70)
2d�2 

− 
L2u

We assume that F (r) can be derived from a potential F (r) = −�Λ. We then use the common trick 
of turning a force equation into an energy equation by multiplying by a first derivative of position 

du(in our case 
d� ) and integrating with respect to the timelike variable � giving 

� �2
du 2 2Λ 2E 

+ u + 
L2 

= 
L2 

, (1.71)
d� 

where E is the conserved energy per unit mass, expressed in our original coordinates as 
� �2 � �2

1 dr 1 d� 
E = + r 2 + Λ(r). (1.72)

2 dt 2 dt 

We can solve for the turning points in the orbit (where ṙ = 0) by setting E = Λeff , where Λeff (r) is 
the effective potential 

1 L2 

Λeff = + Λ(r). (1.73)
2 r2 

To procede further we must choose a potential. There are a wide variety of potentials used in the 
study of galaxies. Most of these require numerical integration of orbits. Here we consider some special 
cases which can be solved analytically and which serve to make interesting points about orbits. 
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a)	 Harmonic Potential: This is just like a spherically symmetric harmonic oscillator, giving 
closed elliptical orbits centered on the origin, 

Λ(r) = 
1
�2 r 2 .	 (1.74)

2


b) Kepler Potential: This is the gravitational potential for a single point mass,


GM 
Λ(r) = − .	 (1.75) 

r 

Taking the derivative of this potential with respect to r and substituting into our equation for 
the second derivative of inverse radius with respect to angle, equation (1.70) gives 

d2u GM 
+ u = .	 (1.76)

d�2 L2


which is just the equation for a simple harmonic in u with


GM

u = C cos(� − �0) + 

L2 
. (1.77) 

Rearranging terms we have 

r = 
a(1 − e2) 

1 + e cos(� − �0) 
, (1.78) 

where 
L2 

a ≥ 
GM (1 − e2) 

, (1.79) 

and e is the eccentricity. Note that there are three constants in the above equations, a, e and 
�0. But there are two more hidden constants, the angles giving the orientation of the orbital 
plane. Thus the orbit traces a one dimensional locus in six dimensional phase space. We shall 
loosely call such constants which reduce the dimensionality of the allowed phase space integrals 
of the motion. 

c)	 Post-Newtonian Kepler Potential: To lowest order the effects of general relativity can be 
approximated by adding a “post-Newtonian” correction to the Newtonian potential, 

GM k 
Λ(r) = − 1 + ,	 (1.80) 

r r 

where k = 2GM/c2 has units of length. Substituting this into our general equation for the 
spherically symmetric case (1.71) we find 

d2u 
� 

2GM k GM 
d�2 

+ u 1 − = .	 (1.81)
L2 L2 

This again gives simple harmonic motion in the radial direction, but the radial frequency is 
no longer unity. The radial and azimuthal oscillations now have different periods, and the 
orbits are no longer closed ellipses. The periastron precesses. One of the early successes of the 
theory of general relativity was its successful explanation of the precession of the perihelion of 
Mercury’s orbit. For larger k the orbit looks like the “rosette” shown in Figure 1.4. 
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Figure 1.14: An elliptical orbit with semi-major 
axis a and eccentricity e. The eccentric anomaly φ 
is defined by circumscribing a circle. 

d) Witta-Paczyński Potential: This has the functional form 

GM 
Λ(r) = − 2GM , (1.82) 

2r − 
c r 

which reduces to the post-Newtonian approximation in the limit of large r. It also has the 
property of having an innermost stable circular orbit (ISCO) that coincides with the innermost 
stable orbit of a Schwarzschild black hole. It allows approximate Newtonian calculations of the 
dynamics of accretion disks without the apparatus of general relativity. 

1.6.1 digression on the Kepler problem 

The solution provided to the Kepler problem above is mathematically correct and practically useless. 
Observations give position or velocity as a function of time, not angle. Unfortunately there is no 
closed form expression for the position as a function of time. But position and time can be given 
parametrically in terms of an angle φ called the eccentric anomaly. The angle � is called the true 
anomaly. Both angles are shown in Figure 1.14. Thus parameterized we have 

r = a(1 − e cos φ) and (1.83) 

P 
t = (φ − e sin φ), (1.84)

2ψ 
where P is the orbital period given by Kepler’s third law 

3a
P = 2ψ . (1.85)

GM 

Once can solve for the true anomaly in term of the eccentric anomaly, and vice versa using 

� ⎞ 
1 + e ⎢1/2 φ 

tan = tan . (1.86)
2 1 − e 2 

We will see this parametric solution to Kepler’s potential again when studying the gravitational 
expansion and collapse of the Universe. 
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1.6.2 digression on the virial theorem 

So as not to interrupt our narrative thread we postponed a proof of the virial theorem, equation (1.40), 

2 √v ⇔orbit = √ξr ξ .�Λ⇔orbit· 

Having now given further attention to orbits we proceed with our proof. Taking the dot product of 
equation (1.60) with ξr and averaging over time gives 

� 
d2ξr 

� 
1 � T d2ξr 1 

⎛ 
dξr 

�
� T � T 

� 
dξr 

�2 
⎣ 

ξr = lim ξr dt = lim �ξr � (1.87)· 
dt2 T �≈ T 0 

· 
dt2 T �≈ T 

· 
dt �

0 

− 
0 dt 

dt⎨ . 

d∂rFor bounded orbits, the long-time average of ξr 
dt is zero, so we are left with · 

�� 
˙
⎡2

� � � � 
− ξr 

d2ξr 
� 

= ξr = ξr ξ
� 

= v (1.88)
time c time

· 
dt2 

time time 
· �Λ 2 

where the last equality holds only for cylindrically symmetric potentials. These results can be very 
helpful in calculating distributions of orbits in phase space, but one must be careful not to abuse the 
Virial Theorem. One may, for example, replace the time average in equation (1.88) with a volume 
average, but only if all stars and orbits are inclueded. The result does not apply, in particular, if the 
average is taken over only a finite region of position space. 




