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1.5 Density-potential pairs & orbits 

Recall that the first step in constructing a galaxy is to pick a gravitational potential. Since differen­
tiation is generally much more manageable than integration, it should be no surprise that we rely on 
Poisson’s Equation to get the density distribution from the potential (Λ � δ via differentiation rather 
than δ � Λ via integration). We shall loosely speak of a density-potential pair being a “model” for a 
galaxy, but such models are incomplete. As we saw in Figure 1.3 there are many ways to populate a 
given density with different orbits. A complete description requires not just a physical density δ(ξx), 
but a phase space density f(ξx, ξp) (# stars/unit volume/unit momentum). 

Different density-potential pairs are good for different purposes. Some have the virtue of simplicity 
or some special symmetry. Others permit one to write the phase space density in closed form, often 
a function of only a limited number of variables: f = f(E), or f = f(E, L2) or f = f(E, Lz ), where 
E, L and Lz are respectively the total energy of the orbit, its angular momentum and its angular 
momentum around the z-axis. Yet others have the property that orbits are self-similar, meaning that 
an orbit at any radius can be scaled by an arbitrary factor producing another legitimate orbit. This 
is especially useful when generating orbit libraries. 

Before proceeding we will want to tighten up our language a bit. We shall use ellipsoid to mean 
something whose equi-something contours are elliptical in cross-section but which generically have 
three unequal axes. A spheroid has also elliptical cross-sections but has two equal axes. Oblate 
spheroids have their long axes equal while prolate spheroids have their short axes equal. 

We present the following list of density-potential pairs so that our reader is not taken by surprise 
when he encounters one in a talk or in the literature. He might even ask “Please remind me what 
special property of the something-something potential makes it appropriate for the problem at hand” 
and then say “ah yes” upon hearing the answer. 

1.5.1 spherical potentials: 

a) point mass: The Kepler potential with 

GM 
Λ(r) = − . (1.41) 

r 

The energy of an object with mass µ is a function only of the elliptical orbit’s semi-major axis 
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a: 
GM µ 

E(a) = − .	 (1.42)
2a 

4b)	 homogeneous sphere: A constant density sphere of mass M = 
3 ψδR3 gives orbits within the 

sphere with constant periods 
3ψ 

T = .	 (1.43)
Gδ 

Formulæ like this are common throoughout astrophysics. The typical dynamical time scale 
Tdyn must vary as (Gδ)−1/2 . The potential outside a homogeneous sphere is the same as that 
of the point mass Λ(r) = −GM/r while for r < R, 

� 
2 
� 

Λ(r) = −2ψGδ R2 r
.	 (1.44)−	

3 

c)	 isochrone: This potential has the interesting property that the orbital period is a function 
only of the energy of the orbit. Recall that the Kepler potential has a similar degeneracy – the 
energy is a function only of the semi-major axis. 

GM 
Λ(r) = − ,	 (1.45)

2b + 
∞

b2 + r

giving a central density of 
3M 

δo =	 (1.46)
16ψb3 

d)	 modified Hubble: The modified Hubble law starts with a surface brightness profile that at 
one time was thought to be a close fit to those observed in for elliptical galaxies, 

2j0a 
I(r) = 

1 + (R/a)2 
,	 (1.47) 

where j0 is a central surface brightness and a is a scale length. It is a variant of a similar one 
called the Hubble-Reynolds Law. To first order it matches the profile for a non-singular isother­
mal sphere. The scale length plays the role of the core radius of the non-singular isothermal 
sphere. The associated analytic potential is somewhat cumbersome, but it is still of some use 
(as we shall see below) for clusters of galaxies. 

e)	 power-law density: These models have simple power-law expressions for the density profile 
with ⎢γ⎞ 

ro
δ(r) = δo .	 (1.48) 

r 

A special case of the power-law density potential is the singular isothermal sphere. It has 
a constant velocity dispersion and a density profile δ r−2 . This gives our old friend, the →
logarithmic potential described in Sec. (1.2). It has a flat rotation curve and infinite mass and 
radius. The logarithmic potentials produce self-similar orbits. There are therefore theoretical 
as well as practical reasons for choosing them. 
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f)	 Dehnen (with special cases Jaffe and Hernquist): These have “cuspy” density profiles for 
small r and a power law of the form δ → r−4 as r � ∼. The phase-space distribution function 
can be written in closed form as a function of energy and angular momentum, f(E, L2). 

g)	 King models: Starting with the isothermal sphere, King introduced an energy cutoff to the 
distribution function that limits the size of the system. The associated truncation radius rT is 
often suggestively called a tidal radius. 

h)	 Navarro-Frenk-White: This is an empirical fit to the observed density profiles in gravita­
tional N-body experiments, 

4δs
δ(r) = 

(r/rs)(1 + r/rs)2 
,	 (1.49) 

where rs is a scale length. It is a member of the larger family 

23−ρ δs
δ(r) = 

(r/rs)ρ (1 + r/rs)(3 − ρ) 
,	 (1.50) 

of which the ρ = 1.5 case is called the Moore profile. Astronomy is not immune to fashion and 
these days the NFW and Moore profiles are quite fashionable, both as models for galaxy halos 
and for clusters of galaxies. 

1.5.2 axisymmetric potentials 

a) Plummer-Kuzmin: also known as “Toomre’s model 1.” In cylindrical coordinates (R, z, θ) 
it has 

Λ(R, z) = 
−GM 

, (1.51) 
R2 + (a + |z|)2 

giving a infinitesimally thin sheet of mass density at z = 0 with mass surface density 

aM 
Ψ(R) = .	 (1.52)

2ψ(R2 + a2)3/2 

b)	 Miyamoto: A combination of the Plummer-Kuzmin model and the spherical Plummer model 
that is often used for globular clusters, 

Λ(R, z) = 
−GM 

.	 (1.53) 
R2 + (a + 

∞
b2 + z2)2 

c)	 “cored” logarithmic: A modified logarithmic potential that avoids a singularity at R = 0 
and scales the z axis by the factor q so as to give a spheroidal potential, with q < 1 in the 
oblate case and q > 1 in the prolate case: 

� 
2 
� 

Λ(R, z) = 
1 
v 2 ln R2 + R2 + 

z

q2 
. (1.54)c2 o 

In the limit of vanishing core radius Rc, the equipotentials all have the same spheroidal shape 
and the equidensity contours likewise all have the same shape (though not spheroidal). The 
orbits are therefore self-similar. 
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d)	 Mestel disk: As in Sec. (1.2), we write this in terms of spherical coordinates, 

Λ(r, β) = v 2 ln 
r 

+ ln 
1 + |

2

cos β| 
.	 (1.55)c Rc 

e)	 self-similar logarithmic: As its name implies, the both the equipotential surfaces and the 
equidensity contours all have the same shape. It is separable in r and β, with 

Λ(r, β) = vo 
2 ln[(r · Q(β)] and	 (1.56) 

⎢2⎞ 
ro

δ(r, β) = δo S(β),	 (1.57) 
r 

where Q(β) and S(β) are arbitrary functions for the potential and density (but of course related 
to each other via Poisson’s equation). The spheroidal logarithmic potentials describe above are 
special cases of this. 

f)	 homoeoids: A homoeoid is a uniform density shell of finite thickness whose inner and outer 
surfaces are similar spheroids. A thin homoeoid is the limiting case where the inner and 
outer shells approach each other. Thin homoeoids have the remarkable property their external 
equipotentials are spheroids that are confocal with the thin homoeoid, while their internal 
potentials are constant. This can be used to generate the potentials of arbitrary spheroidal 
mass distributions. Many of the results for spheroidal systems are most simply expressed in 
spheroidal coordinates. If one draws nested confocal spheroids, there is a corresponding family 
of confocal hyperboloids of revolution. One coordinate is constant on the ellipses (playing the 
role of the radius in spherical coordinates) and the other is constant on the hyperboloids of 
revolution, playing the role of the polar angle. 

1.5.3 non-axisymmetric potentials and the multipole expansion 

The logarithmic potential and homoeoid above are straightforwardly generalized to non-axisymmetric 
cases. In the logarithmic case of the potential, the density and the functions Q and S are then 
functions of r, β and θ. The homoeoids are by extension ellipsoidal rather than spheroidal. 

For more general three-dimensional systems, last resort is to expand the potential in spherical 
harmonics: 

� Ylm(β, θ) 1 
Λ(r, β, θ) = −4ψG	

� r 
δlm(a)a l+2da + r l 

� ≈ δlm(a) 
da 

� 

, (1.58)
2l + 1 rl+1 0	 r al−1 

where Ylm are the spherical Legendre functions and 

δlm(a) = Y �lm(β, θ)δ(a, β, θ)d�.	 (1.59) 

The multipole expansion method is frequently used in N-body simulations because of the compu­
tationally efficient methods for solving the Laplacian with spherical harmonics. 




