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1.12 Stability: Jeans mass and spiral structure 

Until this point we have been concerned primarily with building equilibrium systems. We have not 
yet addressed the question of whether these equilibrium configurations are stable or unstable. The 
standard method for determining the stability of a system in equilibrium is to perturb it slightly. 
Either it will return to its previous configuration and oscillate around it (stable) or it will continue 
in the direction of the perturbation (unstable). The primary forces at work are gravity, which drives 
collapse, and pressure, which resists collapse. Since we have been treating the collection of stars as a 
collisionless fluid, it is not quite correct to think of a conventional fluid pressure, but for our purposes 
we take it that the stellar velocities produce a kind of effective pressure. 

In the best of all possible worlds, one would begin with a time-independent distribution function 
and corresponding potential that solve the collisionless Boltzmann and Poisson equations. One then 
would consider small deviations of order λ � 1 that can change as a function of time. 

f(ξx, ξv, t) = fo(ξx, ξv) + λf1(ξx, ξv, t) 

Λ(ξx, t) = Λo(ξx) + λΛ1(ξx, t). (1.169) 

Substituting (1.169) into the CBE and Poisson equation and equating terms of O(λ), we get 

σf1 σf1 σf0 
+ ξv − ξ

σf1 − ξ = 0 (1.170)�Λ0 · �Λ1 ·
σt 

· 
σξx σξv σξv 

and 
� 2Λ1(ξx, t) = 4ψG f1(ξx, ξv, t)d3ξv . (1.171) 

But as with our study of equilbria, solution for, f1(ξx, ξv, t), a function of 7 variables, is impractical. 

We resort, instead, to perturbing Jeans’ equations, and thus get the perturbations to low order 
moments of the distribution function, which ought to work reasonably well for large scale perturba­
tions. But even Jeans’ equation, the first velocity moment of the CBE, 

σv̄j σv̄j 
= 

σΛ σ 
vi� (�ε2� 

σt 
+ ¯

σxi 
−�

σxj 
− 

σxj 
ij ). 

presents difficulties. Six distinct components of the velocity dispersion tensor must be separately 
perturbed. Such a treatment is “beyond the scope of the present treatment.” We therefore retreat 
to a fluid (as opposed to collisionless) treatment of the perturbations to Jeans’ equations, assuming 
an isotropic velocity dispersion tensor. We multiply the number density � by a particle mass, giving 
a density δ. Dividing through by density and associating the (δε2) term with pressure P gives the 
(collisional) fluid analog, the Euler equation: 

σξv ξ+ (ξv �)ξv = −ξ 1 �P. (1.172)
σt 

· �Λ − 
δ

ξ

The zeroth moment of the CBE gives the mass continuity equation 

σδ 
+ ξ v) = 0. (1.173)

σt 
� · (δξ
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Just as with the distribution function above, we consider small deviations from the steady-state 
equilibrium solutions to the fluid equations (1.172) and (1.173). For small λ, we have the following 
expressions for the density, velocity, pressure, and potential of the fluid: 

δ(ξx, t) = δ0(ξx) + λδ1(ξx, t) 

ξv(ξx, t) = ξv0(ξx) + λξv1(ξx, t) 

P (ξx, t) = P0(ξx) + λP1(ξx, t) 

Λ(ξx, t) = Λ0(ξx) + λΛ1(ξx, t) (1.174) 

The O(λ) terms give 
σξv1 ξ ξ+ (ξv0 · �)ξv1 + (ξv1 · �)ξv0 = −ξ �h1, (1.175)�Λ1 − ξ
σt


σδ1

+ ξ v1) + ξ v0) = 0, (1.176)

σt 
� · (δ0ξ � · (δ1ξ

and 
� 2Λ1 = 4ψGδ1, (1.177) 

where the term h1 in equation (1.175) is the first-order perturbation to the enthalpy, defined as 

� π dP (δ) 
, (1.178)h ≥ 

0 δ 

giving the perturbation expression for the enthalpy as 

dP δ1
h1 = 

δ1 
= vs 

2 , (1.179)
dδ δ0 δ0π0 

where vs is the sound speed in the fluid. 

To get Eqns. (1.175-1.177) into a form which can be solved analytically, Jeans made an additional 
simplifying assumption, that of a static, infinite background density (δ0 = const, ξv0 = 0, Λ0 = 0). 
This assumption is neither physically realistic nor self-consistent, but it allows us to write the fluid 
equations as two coupled first-order partial differential equations: 

σδ1 
+ δ0 

ξ v1 = 0 (1.180)
σt 

� · ξ

and 
σξv1 

= −ξ (1.181)
σt 

�h1 −�Λ1. 

These can be combined into a single second-order equation in the density perturbation δ1 

σ2δ1 2 − vs � 2δ1 − 4ψGδ0δ1 = 0. (1.182)
σt2 

This is wave equation, so we try solutions of the form 

δ1(ξx, t) = C exp[i(ξk ξx − γt)]. (1.183)·
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Substituting (1.183) into (1.182) gives a dispersion relation 

γ2 = v 2k2 − 4ψGδ0. (1.184)s 

If γ2 > 0, the perturbations propagate like sound waves through the fluid, i.e. the perturbations 
are stable. If γ2 < 0, we get a real, positive exponent in the equation (1.183), giving unstable 
exponential growth. Setting γ2 = 0 gives the critical wavenumber, or equivalently the critical length 
scale (ω = 2ψ/k), for which initial density perturbations will grow exponentially. This wavelength is 
called the Jeans length and is given by 

ψv2 
sω2 

J = . (1.185)
Gδ0 

The amount of matter within such a critical volume is easily calculated assuming a spherical density 
perturbation of radius ωJ and average density δ0. This Jeans mass is typical of the structure we can 
expect to be formed due to unstable gravitational collapse: 

4ψ 
MJ = δ0ω

3 
J . (1.186)

3 

Our derivation thus far has been for collisional fluids. How are these results used to understand 
collisionless stellar systems? The speed of sound v2 must be replaced by the velocity dispersion ε2 .s 

This gives a dispersion relation that is slightly different from equation (1.184) but the Jeans mass 
remains unchanged. 

For an isolated spherical system of point masses, the crossing time r/ε is approximately the same 
as the free-fall collapse time, t � 1/

∞
Gδ. Nothing smaller than the whole system can be unstable to 

gravitational collapse. 

Going back to the linear analysis, we can use the same methods with modifications appropriate 
to other geometries. Cylindrical coordinates would seem a good choice for fluid disks. We assume 
perturbations of the form eimθ for integer values of m. The simplest case is that of m = 0, which 
gives the dispersion relation 

γ2 = v 2k2 − 2ψGΨ k + η2 , (1.187)s | | 
where Ψ is the integrated surface density of the disk and η is the same epicyclic frequency introduced 
in section (1.7). A dimensionless factor, Toomre’s Q, defined by 

vsη 
(1.188)Q ≥ 

ψGΨ 

allows the dispersion relation to be written as 

⎢2⎞ 
ψGΨ 

γ2 = Q2k2 − 2ψGΨ k + η2 . (1.189)
η 

| | 

In this form the stability of the system depends solely on Q: 

Q = 1 gives perfect square, γ2 ≈ 0 

Q > 1 stable for all k 

Q < 1 unstable for some k (1.190) 
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Figure 1.25: The crest of an m = 1 perturbation 
makes angle i with the tangential direction. 

A similar treatment of a collisionless stellar disk yields a similar dispersion relation, with the quali­
fication that the dimensionless constant ψ used in defining Toomre’s Q, (eqn. 1.188), is replaced by 
the dimensionless constant 3.36, a change of less than 10%. 

For values of m = 1, 2, ..., the picture gets somewhat more complicated. The first complication is 
that the notation changes – we switch from γ to �p ≥ γ/m where the subscript p denotes pattern 
speed. Full derivation of the dispersion relation is again “beyond the scope of the present treatment.” 
There are nonetheless some important points that are relatively easy to follow. 

First, there is a problem. Suppose that the stars in a disk are in circular orbits, with some orbits 
overpopulated so as to cause an apparent spiral. The position of the “crest” in polar coordinates is 
described by 

θ(R, t) = θ0 + �(R)t . (1.191) 

The the crest will in general make an angle i with the tangential direction. As illustrated in Figure 
1.25 we find 

R

σθ

σR


t whence (1.192)

d�

dR


cot i = = R 

dαn�

dαnR


cot i = �t . (1.193) 

The relevant time t is of order the Hubble time, in which case the product �t is of order 100ψ. If 
�(R) is not constant (solid body rotation) any spiral that is more than a few galactic “years” old 
will have a very small inclination i – it will have wound up. 

Lindblad came up with a scheme that partially mitigates the wind-up problem. Recall that with 
a few special exceptions, the orbits in a circularly symmetric potential do not close – the radial and 
aziumthal periods, Tr and Ta are different. There is a phase Ωθ ≥ γaTr which is not in general a 
multiple of 2ψ, nor is it in general an integer fraction thereof. But in a frame of reference rotating 
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Figure 1.26: A series of nested ellipses produce a spiral arm.
Such a “kinematic” spiral can only persist if there is a rotat-
ing frame in which all of the orbits are closed ellipses. This
is not possible for a logarithmic potential.

x
y

Figure 1.27: A star executes an elliptical epicycle as a spiral arm winds up. The coordinate system
is in the frame of guiding center, which is moving toward the left. Notice that the star spends a large
part of the epicycle close to the spiral arm.

with orbital frequency �p, the phase of the orbit is given by

Ωθp = Ωθ − γpTr . (1.194)

If Ωθp = 2ψn/m the orbit closes afer m radial oscillations and

�p =
Ωθ

Tr

− Ωθp

Tr

= γa −
n

m
γr � � − n

m
η , (1.195)

where η is the epicyclic frequency. Taking n = 1 and m = 2 gives closed ellipses. Let us suppose
that there is a range of radii for which � − η/2 is constant. If one could then somehow arrange to
populate at set of perturbed orbits with the correct phase, one might produce a pattern like that in
Figure 1.26 that would persist for some time.

Lindblad’s construction may point in the right direction, producing roughly the correct pattern
speed, but it does not work well for our flat rotation curve Mestel disk model, for which η =

∞
2�

giving �p = 0.29�. Spirals wind up more slowly, but they still wind up.

But Lindblad’s construction is kinematic, in that the spiral is an accident of initial conditions
rather than a dynamical entity. Various investigators have attempted to constuct persistent spiral
patterns for which self-gravity in some way overcomes the wind-up problem. Chief among these have
been Lin and his collaborators, who have advanced the scenario of quasi-stationary density waves.
For many galaxies the wind-up problem appears to preclude quasi-stationary density waves, but they
may be possible in galaxies in which a bar forces them.

An alternative approach is to give up on the quest for immortality to embrace short-lived spi-
rals. Toomre in particular has emphasized that close encounters between galaxies will cause tides
that produce magnificent transient spiral patterns. The swing amplification of leading spiral arms,
illustrated in Figure 1.27, plays a major role in this model. Measuring the inclination i of the spiral
arm with respect to the tangential (horizontal) direction we have

cot i = −R
d�

dR
t , (1.196)

where d�
dR

< 0. Differentiation with respect to time and using the definitions of Oort’s constants,



45 1.12. STABILITY: JEANS MASS AND SPIRAL STRUCTURE 

Equations 1.114 and 1.115, we that the time rate of change of the inclination angle is given by 

di 2A 
= . (1.197)

dt 1 + A2t2 

For a Mestel disk the epicyclic frequency is η = 
∞

2A, roughly equally to the time rate of change of 
the inclination for most of an epicycle. Stars whose motions are in phase with the spiral arm stay in 
phase and self-gravitate, increasing the amplitude of the disturbance. Eventually the arm winds up. 

Tides play a role, in particular, in the “grand design” spirals, starting with M51 for which the 
companion responsible for the tide is clearly visible, and M81, whose spiral arms appear to result 
from an encouneter with M82, which itself is undergoing a starburst. 

Yet another scheme for producing spiral arms is self-propagating star formation. The idea is that 
star formation propagates along an interface much like a detonation front, which is sheared out by 
differential rotation. This produces patterns more like those seen in the “flocculent” spirals. The 
bottom line on spiral structure is that different mechanisms may be at work in barred, grand design 
and flocculent spirals. 




