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Rindler spacetime and causal structure

To understand the spacetime structure of a black hole, let us consider the region near (but outside) the horizon.

Introducing the proper distance ρ from the horizon:

dr r r dr
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Solving the above equation we have
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Then we can express f as a function of ρ
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where K is the surface gravity defined in Lecture 2.

Near the horizon, we have

ds2 = �K2ρ2dt2 + dρ2 + r d2 Ω2
s 2 = �ρ2dη2 + dρ2 + r d2 Ω2

s 2

here we define η = Kt = t . The first two terms in the above expression is called (1+1)d Minkowski metric in a2rs
Rindler form.

To see this, consider M2 (2d Minkowski spacetime):

ds2 2
2
= �dT + dX2

M

let X = ρ cosh η, T = ρ sinh η, then
ds2 = �ρ2

2
dη2 + dρ2M

But since X2 � T 2 = ρ2 � 0, (ρ, η) coordinates only covers a part of M2. And ρ � 0 sector corresponds to X � 0
i.e. region I as shown in Fig. 1.
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Figure 1: Casual structure of M2 in the Rindler form.
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Note that

X = T (X > 0) : η → ∞, ρ → 0 with ρeη finite

X = �T (X > 0) : η → �∞, ρ → 0 with ρe�η finite

X = T = 0 : ρ → 0, any finite η

thus the horizon of a black hole ρ = 0 is mapped to the light cone X = ±T . And near-horizon black hole geometry
can be viewed as Rindler × S2 as shown in Fig. 2.
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Figure 2: Near-horizon black hole geometry.

Remarks:

1. An observer at r = const (r 2 rs) is mapped to and observer with ρ = const in a Rindler patch, i.e. an
observer in Minkowski spacetime following a hyperbolic trajectory

X2 � T 2 = ρ2 = const

One thing to check here is such an observer has a constant proper acceleration 

1 f '(rs) 1 
a = =

ρ 2
√
r � rs

And furthermore, the acceleration seen by O would be a = a(r)f1/2(r) = K.∞ ∞

2. A free-fall observer near a black hole horizon is equal to an inertial observer in M2.

3. Rindler coordinates (ρ, η) become singular at ρ = 0, but using Minkowski coordinates (X,T ), one could
extent region I to the full Minkowski spacetime. Similarly, by changing to suitable coordinates (Kruskal
coordinates), one can extend the Schwarzschild spacetime to four patches (Fig. 3).

• Clearly, no information or observer in region II can reach region I (separated by a future horizon).

• Region III and IV are related to I and II by time reversal. They do not exist for real black holes formed
from gravitational collapse. Observer in region I cannot influence events in region IV (separated by a
past horizon).

• At r = 0, there is a black hole singularity, called curvature singularity which is space-like.

Penrose diagrams

In this section, we study Penrose diagrams, which are used to visualize the global causal structure of a spacetime.

In the following, we show the steps to draw a Penrose diagram of a spacetime. We start with the metric:

ds2 = gab(x)dx
adxb
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Figure 3: Schwarzschild blackhole geometry in Kruskal coordinates.

1. Find a coordinate transformation xa = xa(yα) so that yα has a finite the range (map the whole spacetime to
a finite region).

2. Construct a new metric which is conformally related to the original one

ds̃2 = Ω2(y)ds2 = g̃ α β
αβ(y)dy dy

such that g̃ is simple. ds̃2 and ds2αβ have the same causal structure as null rays are preserved by conformal
scalings.

Example:
(1+1)d Minkowski space

ds2 = �dT 2 + dX2 = �dUdV ; U = T �X, V = T +X

let U = tanu, V = tan v, then u, v ∈ �π , π . We define the following:2 2

i0: sp

 
atial i

 
nfinity (X infinite, T finite)

i+: time-like future infinity (T → ∞, X finite)

i : time-like past infinity (T → �∞, X finite)�

I+: null future infinity (where all null rays end)

I : null past infinity (where all null rays start)�

And we can label these points (lines) accordingly in the Penrose diagram for M2 (Fig. 4)

Figure 4: M2 Penrose diagram.

Another more interesting example is the Schwarzschild black hole

1
ds2 = �fdt2 + dr2 + r2dΩ2

f 2
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1. We first consider (r, t) plane

2. Then we go to a coordinate system (Kruskal) which covers all four regions (analogue of U, V in Minkowski
spacetime)

3. Next we make a coordinate transformation to make the new coordinate has a finite range

(U, V ) → (u, v)

In the end, we get the Penrose diagram of Schwarzschild black hole as shown in the right panel of Fig. 5

→

Figure 5: Schwarzschild black hole Penrose diagram.

1.2.3 black hole temperature

In this section, we will show that a black hole has a temperature, as viewed by a stationary observer outside the
black hole. First we need to define the temperature. Recall that in QFT, to describe a system at finite temperature
(T), we analytically continue to Euclidean signature, i.e. t → �iτ . And let τ to be periodic: τ ∼ τ + lβ, with
β = 1 . Notice that here we have also adapted the convention kB = 1. Conversely if Euclidean continuation of aT
QFT is periodic in time direction, we can conclude that the QFT is at finite temperature. This is exactly what we
are going to do to interpret the temperature of a black hole.

If we analytically continue the Schwarzschild metric to Euclidean signature with t → �iτ

1
ds2 = fdτ2 + dr2 + r2dΩ2

E f 2

Near the horizon

ds2 = ρ2K2dτ2 + dρ2 + r2dΩ2 τ
= 2

2 ρ2dθ = dρ2 + r2sdΩ
2

E 2; θ = Kτ =
2rs

Note that the first two terms above describe a polar coordinates in Euclidean R2. This metric has a conical
singularity unless θ is periodic in 2π, i.e. θ ∼ θ + 2π. Since horizon is non-singular in Lorentzian signature, it
should not be singular in Euclidean. Hence τ must be periodic

2π
τ ∼ τ +

K

Recall that t is the proper time for an observer at r = ∞, an observer at r = ∞ must feel a temperature:

1 lK l
T = = =

β 2π 8πGNm

For an observer at some r, since dt oc = f1/2
l (r)dt, we have

lK
T 1/2
loc(r) = f� (r)

2π

This local temperature goes to ∞ as we approach the horizon, i.e. the black hole horizon is a very hot place for a
stationary observer!
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Similarly for Rindler spacetime

ds2 = −ρ2dη2 + dρ2 → η = −iθds2E = ρ2dθ2 + dρ2

Since θ must be periodic in 2π, we define the local proper time: dτ2 = ρ2dθ2loc . Then τloc must be periodic

TRindler
~

loc (ρ) =
2πρ

=
~a
2π

where we have used the relation a = 1 . So in Minkowski spacetime, an accelerated observer will feel aρ
temperature proportional to its acceleration!

So now we have a quite simple derivation of black hole temperature as shown above, but one needs to dig further
on the physics behind this simple picture.
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