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Lecture 3

Rindler spacetime and causal structure
To understand the spacetime structure of a black hole, let us consider the region near (but outside) the horizon.
Introducing the proper distance p from the horizon:

dp — ﬂ r=Ts dr
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Solving the above equation we have
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f(rs)
Then we can express f as a function of p
1
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where K is the surface gravity defined in Lecture 2.

Near the horizon, we have
ds* = —K?p2dt?® + dp* + r2dQ3 = —p?dn® + dp® + r2dQ3

here we define n = Kt = i The first two terms in the above expression is called (1+1)d Minkowski metric in a
Rindler form.

To see this, consider M5 (2d Minkowski spacetime):
dsiy, = —dT* + dX?

let X = pcoshn, T'= psinhn, then

dsiy, = —p*dn® + dp?
But since X2 — T2 = p? > 0, (p,n) coordinates only covers a part of My. And p > 0 sector corresponds to X > 0
i.e. region I as shown in Fig. 1.

Figure 1: Casual structure of Ms in the Rindler form.
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Note that

X=T(X>0): n—o00,p—0 with pe" finite
X=-T(X>0): n— —oo,p— 0 with pe™" finite
X=T=0: p—0,any finite n

thus the horizon of a black hole p = 0 is mapped to the light cone X = £7. And near-horizon black hole geometry
can be viewed as Rindler x S? as shown in Fig. 2.

G

at any t

Figure 2: Near-horizon black hole geometry.

Remarks:

1. An observer at r = const (r 2 r,) is mapped to and observer with p = const in a Rindler patch, i.e. an
observer in Minkowski spacetime following a hyperbolic trajectory

X2 - T? = p? = const
One thing to check here is such an observer has a constant proper acceleration

L fllrs) 1

P 2 Vr—rs

And furthermore, the acceleration seen by O, would be as = a(r)f/%(r) = K.

2. A free-fall observer near a black hole horizon is equal to an inertial observer in Ms.

3. Rindler coordinates (p,n) become singular at p = 0, but using Minkowski coordinates (X, T'), one could
extent region I to the full Minkowski spacetime. Similarly, by changing to suitable coordinates (Kruskal
coordinates), one can extend the Schwarzschild spacetime to four patches (Fig. 3).

e Clearly, no information or observer in region II can reach region I (separated by a future horizon).

e Region IIT and IV are related to I and II by time reversal. They do not exist for real black holes formed
from gravitational collapse. Observer in region I cannot influence events in region IV (separated by a
past horizon).

e At r =0, there is a black hole singularity, called curvature singularity which is space-like.

Penrose diagrams

In this section, we study Penrose diagrams, which are used to visualize the global causal structure of a spacetime.

In the following, we show the steps to draw a Penrose diagram of a spacetime. We start with the metric:

ds® = gap(2)dzda®
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Figure 3: Schwarzschild blackhole geometry in Kruskal coordinates.

1. Find a coordinate transformation % = z%(y®) so that y® has a finite the range (map the whole spacetime to

a finite region).
2. Construct a new metric which is conformally related to the original one

ds? = Qz(y)cls2 = ga/g(y)dyadyﬁ

such that g,s is simple. d3% and ds? have the same causal structure as null rays are preserved by conformal

scalings.

Example:
(141)d Minkowski space

ds? = —dT? +dX? = —dUdV; U=T-X,V=T+X

let U =tanu, V = tanwv, then u,v € [—g, %] We define the following;:

ip: spatial infinity (X infinite, T finite)

i+: time-like future infinity (7' — oo, X finite)
i_: time-like past infinity (7' — —oo, X finite)

: null future infinity (where all null rays end)

: null past infinity (where all null rays start)

And we can label these points (lines) accordingly in the Penrose diagram for My (Fig. 4)

Figure 4: My Penrose diagram.
Another more interesting example is the Schwarzschild black hole
1

ds? = — fdt? +
Jr

dr? + T2dQ§
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1. We first consider (r,t) plane

2. Then we go to a coordinate system (Kruskal) which covers all four regions (analogue of U,V in Minkowski
spacetime)

3. Next we make a coordinate transformation to make the new coordinate has a finite range
(U, V) = (u,v)

In the end, we get the Penrose diagram of Schwarzschild black hole as shown in the right panel of Fig. 5

Figure 5: Schwarzschild black hole Penrose diagram.

1.2.3 black hole temperature

In this section, we will show that a black hole has a temperature, as viewed by a stationary observer outside the
black hole. First we need to define the temperature. Recall that in QFT, to describe a system at finite temperature
(T), we analytically continue to Euclidean signature, i.e. t — —iT. And let 7 to be periodic: 7 ~ 7 4+ kS, with
8= % Notice that here we have also adapted the convention kg = 1. Conversely if Euclidean continuation of a
QFT is periodic in time direction, we can conclude that the QFT is at finite temperature. This is exactly what we
are going to do to interpret the temperature of a black hole.

If we analytically continue the Schwarzschild metric to Euclidean signature with ¢ — —ir
1
dsh = fdr* + ?dﬁ +r%dQ3

Near the horizon
T
T 2r,

ds% = ,02[(2d7'2 + dp2 + rdeg = p2d6’2 = d,o2 + ngﬂg; 0=Kr

Note that the first two terms above describe a polar coordinates in Euclidean R?. This metric has a conical
singularity unless 6 is periodic in 27, i.e. 8 ~ 6 + 27. Since horizon is non-singular in Lorentzian signature, it
should not be singular in Euclidean. Hence 7 must be periodic

n 2w

T~T+ —

K

Recall that t is the proper time for an observer at r = oo, an observer at r = oo must feel a temperature:
1  hK h

T:—:izi
I5) 2 8rGnm

For an observer at some r, since dt;o. = f'/%(r)dt, we have

hK
noc (7’) = %

This local temperature goes to co as we approach the horizon, i.e. the black hole horizon is a very hot place for a
stationary observer!

F2 ()
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Similarly for Rindler spacetime
ds* = —p?dn? + dp* — n = —ifds% = p?dh* + dp?
Since § must be periodic in 27, we define the local proper time: dr7 . = p?df*. Then 7;,. must be periodic

i h ha
Ty (p) = 21p ~or

where we have used the relation a = 1. So in Minkowski spacetime, an accelerated observer will feel a
temperature proportional to its acceleration!

So now we have a quite simple derivation of black hole temperature as shown above, but one needs to dig further
on the physics behind this simple picture.
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