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So far, we have discussed the thermal boundary theory on Rd−1, which is dual to a black brane, i.e. horizon 
with topology Rd−1 . One can also consider the same boundary theory on Sd−1 at a finite temperature. For a CFT 
on Rd−1 , T is the only scale, which provides the unit of energy scale. This implies that physics at all temperatures 
are the same, i.e. related by a scaling. For a CFT on Sd−1, which has a size R, then physics will depend on the 
dimensionless number RT , and can have nontrivial physics depending on T . Here are some important features: 

1. A thermal gas is allowed in a thermal AdS. If we write in global AdSd+1: 

r2 dr2 

ds2 = − 1 + 
R2 

dt2 + 
r

+ r 2dΩ2 (r ∈ (0, ∞)) (1) 2 d−1
1 + R2 

If we rotate the time to be Euclidean, t → −iτ , we must require a periodicity, τ ∼ τ + β. The local b 
proper size of τ -circle is 1 + r2/R2β ≥ β, which is perfectly defined, as long as β is not too small, say √

'β ∼ α . 

2.	 The black hole solution is given by 

ds2 = −f(r)dt2 + 
f(

1 
r) 
dr2 + r 2dΩ2 (2) d−1 

where 
2r µ

f = 1 + −	 (3) 
R2 rd−2 

where µ related to black hole mass. The horizon is located at r = r0 where f(r0) = 0. The temperature 
is given by 

4π 4πr0R 
β = =	 (4) 

f '(r0) dr2 + (d − 2)R2 
0 

Notice here is a βmax for black hole solution, which corresponds to Tmin. Furthermore, for any T > Tmin, 
we can have two black hole solutions as shown in the picture below, where the small black hole has 
negative specific heat since r0 ↓ =⇒ T ↑ whereas the big black hole has positive specific heat since 
r0 ↑ =⇒ T ↑. 
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Figure 1: Temperature of different black holes 
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3.	 One thus finds: (i) T < Tmin: only thermal AdS (TAdS); (ii) T > Tmin: three possibilities: TAdS, big 
black hole (BBH) and small black hole (SBH). What does this mean? Indeed, three possible gravity 
solutions implies three possible phases for a CFT on Sd−1, which are determined by the minima of free ´−βF	 SE [Φ] ∼ eSE [Φcenergy. Recall e = ZCFT = Zgravity = DΦe ], we can write the free energy of CFT 
in terms of classical gravity solution: 

1 
F = − SE [Φc]	 (5) 

β 

Thus we need to evaluate the Euclidean action for the three solutions and find the one with largest SE . 
This also follows from the saddle-point approximation itself: 

Zgravity = e SE |T AdS + e SE |BBH + e SE |SBH	 (6) 

where clearly the solution with largest SE dominates. 

14.	 We know SE ∝ ∼ O(N2). For TAdS, it is O(N0) from classical thermal graviton gas as it differs GN 

from global AdS only in global structure. For two black hole solutions, one can show that SE (BBH) > 
SE (SBH) ∼ O(N2). Hence SBH will not dominate anyway. There exists a temperature Tc(Tc > 
Tmin) such that (i) T < Tc, SE (BBH), SE (SBH) < 0, TAdS dominates; (ii) T > Tc, SE (BBH) > 0 
and dominates. This means the system experiences a first order phase transition at Tc since the free 
energy jumps from O(N0) to O(N2) (derivative of F is not continuous) to go from T AdS to BBH, 
which is called Hawking-Page transition. To find the SE |BH , one may encounter divergence and need 
renormalization, which can be done by either subtracting covariant local counterterms at the boundary 
or subtracting the value of pure AdS. A short cut is 

d−1 wd−1r0S =	 (7) 
4GN
 

where wd−1 is the area of unit (d − 1)-sphere and r0 = r0(β). Integrate over
 

∂F ∂F ∂r0
S = − = −	 (8) 

∂T ∂r0 ∂T 

to get 
dwd−1 rd−2 0F = r −	 (9) 0 R216πGN 

where the integral constant is chosen such that F = 0 for r0 = 0. Thus FBH > 0 if r0 < R and FBH < 0 
if r0 > R. The critical temperature is βc = β(r0 = R) = 2πR .d−1 

5.	 Since physics only depends on RT , large R at fixed T is the same as large T at fixed R. So a CFT on 
Rd−1 where R → ∞ always corresponds to the high temperature phase, described by a black hole. 

6.	 Physics reasons for Hawking-Page transitions. Consider 2N2 free harmonics oscillators with same fre­
quency ω = 1. It can be described by two matrices A and B, each containing N2 harmonic oscillators, 
whose Lagrangian can be written as 

1 1 1 1 L = T r Ȧ2 + T r Ḃ2 − T rA2 − T rB2	 (10) 
2 2 2 2 

The spectrum density with respect to energy is roughly 

D(E) ∼ O(N0) for E ∼ O(N0) (11) 

D(E) ∼ e O(N 2) for E ∼ O(N2) (12) 

For temperature β ∼ O(N0), then the partition function 

Z = 
ˆ 

dEe−βE D(E) (13) 

naively contains most contribution from E ∼ O(N0). However for E ∼ O(N2), those contributions are 
ˆ 

#N2 

dEe−#βN 2 

e	 (14) 
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which means when β is large, T is small, then e−βE dominates whereas when β is sufficiently small, 
O(N2)T is large, such that log D(E) − βE > 0, O(N2) states dominate and Z ∼ e . We thus expect a 

phase transition at some point going from F ∼ O(N0) to F ∼ O(N2) as we raise the temperature. This 
discussion can be generalized to a CFT, say N = 4 SYM, on a sphere. Expand all fields in terms of 
harmonics on Sd−1, then we will have O(N2) harmonic oscillators, which (i) have different frequencies 
(ii) interact with each other (iii) form SU(N) singlets as physical states. Nevertheless, the qualitative 
picture above survives. Finally, we conclude: 

T AdS ⇐⇒ states with E ∼ O(N0) 

BBH ⇐⇒ states with E ∼ O(N2) 

and Hawking-Page transition becomes first order in N → ∞ limit. Sometimes, it is also called “decon­
finement” transition. 

3.2.2: FINITE CHEMICAL POTENTIAL 

N = 4 SYM has SO(6) global symmetry. We can choose e.g. one of the U(1) subgroup and turn on a chemical 
potential for that U(1). In statistical physics, grand canonical ensemble is defined as 

−βH−βµQ)Ξ = Tr(e (15) 

where Q is the conserved charge for U(1). In field theory, this corresponds to deforming the action by 
ˆ 

d4xµJ0 (16) 

On gravity side, we should then turn on the non-normalizable modes for the gauge field Aµ dual to Jµ, i.e. 

lim A0(z, x) = µ (17) 
z→0 

The bulk geometry dual to the boundary theory at a finite chemical potential can then be found by solving Einstein-
Maxwell system with boundary condition (17). Metric should still be normalizable. The ansatz is 

R2 R2 

ds2 = (−f(z)dt2 + d x 2) + g(z)dz2 (18) 
z2 z2 

and 
A0(z) = h(z) h(0) = µ (19) 

The solution is charged black hole in AdS which is characterized by a T and µ. 
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