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Let us summarize some important results from last lecture. Consider a bulk scalar field ®(z,z) with mass m.
In z — 0 limit, the behavior of ® is
®(z,2) = A(x)22 + B(x)z> (1)

2
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The correspondence between boundary CFT operator O and bulk field ¢ works as

where

scaling dimension = A
source for O: ¢(x) = A(x)
(O(z)) = 2vB(x)

T =~ W
=

In the example we consider B(k) xx A(k), i.e. (O(x)) =0if ¢ = 0. In the presence of source ¢(k), the general result
for 1-point function is

(Ok)p ~ b+ "+ (6)
In particular, at linear level,
(O(K))o = Gu(k)o(k) (7)
where
Ge(z) = (0(x)0(0)) = Gg(k) (8)
by Fourier transformation is the 2-point function, which can also be computed as
528 ) O(k 2vB(k
o) = Sataer ~ 5 O = 50 = ) ©)

All above can be generated to other types of operators and corresponding fields.
For higher point functions, recall

log Zorr|¢] = Sp[Pcloaas = ¢] (10)
We can consider, for instance, the action as
d+1 1 o 1 o940 Ass
S=—[d"z\/g 5(8@) Jrim(I) +§<I> (11)
where A ~ k ~ O(1/N) (Gn ~ k?). Now we need to solve a nonlinear equation of motion to get classical solution
O — m?® — \®? =0 (12)
with
o A—d _
lim 227%®(x, z) = ¢(x) (13)
z—0

Since A is small, one can solve (12) perturbatively in ¢(z) and get
Do=Dy+ Pyt (14)
where ®; is linear in ¢ and ®, is quadratic in ¢. Substitute this solution back to the action, we must get
S[®c] = Sa[d] + Ss[¢] + - -- (15)

where S5 is quadratic in ¢ and S3 is cubic in ¢, which contain 2-point function and 3-point function respectively.
In practice, of course it is tedious to go through this. But this is almost the same as standard perturbation theory
in a QFT: we use Feynman diagrams!
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Recall in a flat space QFT, how we calculate correlation functions. Consider the A®3 theory in flat space as
(11). To get
(@(21)P(22) - - D(wn)) (16)

Using exp(W[J]) = [ D®exp(Sg + [ d*zJ(2)®(z)), and

oW
0J(x1) - 0J(xp)

(®(21)D(22) - - B(2n)) = (17)

it is equivalent to calculate the following Feynman diagram:

1

Figure 1: Feynman Diagram in flat space

Now back to AdS, one major difference is source ¢(z) lies on the boundary. Then our Feynman diagram should
be as follows:

boundary

G

Figure 2: Feynman Diagram in AdS

In the picture, the bulk-to-bulk propagator G(z,z; z’, ) is given by

—m?)G(z,x; 2, & _ L z— 26D (z — 2
o )G(z,2; 2, @) \@5( )5 ( ) (18)

which is the counterpart of standard flat space propagator. In particular, G(z,x;2’,2") should be normalizable
when either of z or 2’ is taken to the boundary, i.e. G(z,;2',2') o 2 as z — 0. This is the result of propagator
construction from the quantization of normalizable modes. Furthermore, we must also introduce boundary-to-bulk
propagator K (z,x,;x’), which satisfies

(O-mH)K(z,2;2") =0 (19)
K(z,z;2') = 29726D (z — o) (z—0) (20)
D(z,x) :/ddx'K(z,z;z’)(b(o:') (21)

such that ® computed above behaves like 27~2¢(x) near the boundary. The analogue of K in flat space is LSZ
formula when dealing with external legs.
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To summarize, the n-point function in CFT can be calculated as
(O(z1) -~ Ofan)) = (®(21) - - () (22)

where the right hand side can be computed by Feynman diagrams in AdS with end points lying on the boundary.

Remarks:
1. The full partition function can be separated as classical part and quantum fluctuation:
Zepr — / DdeSlEl _ Spled] / DgeSel®etol-Spled] (23)
Ploaas=¢
where Sg[®.] corresponds to tree-level diagrams and ¢ integral is loop diagrams that can be captured
by standard Feynman rules.
2. The complete analogue of standard flat space Green functions are (®(zy1,21) - ®(zp,x,)) that only

includes bulk-to-bulk propagators. It is natural to expect

(D(x1) -+ D(ay)) leir_r>10~ . Zgglo(¢(z17 x1) - D(zn, xp)) (24)
This boils down to finding the relation between K (z, x; 2') and lim,/ o G(z, x; 2’'2"), which we will discuss
more explicitly in pset. The crucial result is

(O(x1) - O(x)) = lm 2012720 -+ lim 20,2, 27 (B (21, 21) - - - B(20, Tn)) (25)

z1—0 Zn—0

3.1.7: WILSON LOOPS

Wilson loops
WI[C] = TrPeXp[i/ A, daxt] (26)
c

are most non-local operators in a gauge theory. Here C'is a closed path in space time, A, = A{, T where T is often in
fundamental representation and P is path ordering. The physical meaning of Wilson loops is phase factor associated
with transporting an “external” (quark) particle in a given representation along C. The simplest observable related
to it is (0|W[C]|0), although we can also consider for some vacuum with temperature (U|W[C1]W[Cs]---|¥). An
often used loop is as follows

L

Figure 3: Square Wilson loop

In this picture 7' > L. From Wilson loop calculation in QFT, we know (W (C)) ~ e~*¥T where F is the potential
energy between an external “quark” and “anti-quark”.

How to calculate (W (C)) in N' = 4 SYM using gravity? First we need to understand how to introduce an
external quark in A/ = 4 SYM and its AdS description. Suppose we have N + 1 D3 branes piled upon each other.
If we separate one of them along one perpendicular direction for distance |r] (shown in the following picture),
the open string connecting those D3 branes will break symmetry from SU(N + 1) to SU(N) x U(1) and we will
have some strings with two end points located on the separated D3 brane and the rest N ones respectively. If we
consider the fluctuation field living on those D3 branes, this gives a description of a particle (“quark”) in fundamental

representation of SU(N) with mass M = ul

2mal

from symmetry breaking.
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string
?

Figure 4: D3 brane separation

Now consider the low energy limit of Maldacena, o’ — 0 and r — 0 keeping r/c’ finite such that remaining in
N =4 SYM. In the resulted gravity side, N D3 branes have disappeared, one finds only one D3 brane in AdSs x S®
which located at 7" and the other N D3 branes disappeared at » = 0 such that we get a “string” hanging from the
D3 brane at ¥ to r = 0. If we want the “quark” to have infinite mass, we should take r — oo, i.e. to the boundary
of AdS. In this case, the external “quark” with M — oo in N' = 4 SYM can be interpreted in bulk as a “string”
hanging from the AdS boundary to deep interior and the hanging point is the location of the quark.
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