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Let us summarize some important results from last lecture. Consider a bulk scalar field Φ(x, z) with mass m. 
In z → 0 limit, the behavior of Φ is 

d−Δ ΔΦ(x, z) → A(x)z + B(x)z (1) 

where  
d d2 

Δ = + ν ν = + m2R2 (2) 
2 4 

The correspondence between boundary CFT operator O and bulk field Φ works as 

scaling dimension = Δ (3) 

source for O: φ(x) = A(x) (4) 

(O(x)) = 2νB(x) (5) 

In the example we consider B(k) ∝ A(k), i.e. (O(x)) = 0 if φ = 0. In the presence of source φ(k), the general result 
for 1-point function is 

(O(k))φ ∼ φ + φ2 + · · · (6) 

In particular, at linear level, 
(O(k))φ = GE (k)φ(k) (7) 

where 
GE (x) = (O(x)O(0)) =⇒ GE (k) (8) 

by Fourier transformation is the 2-point function, which can also be computed as 

δ2S δ (O(k))φ 2νB(k)
GE (k) = = (O(k))φ = = (9) 

δφ(k)δφ(−k) δφ(k) φ(k) A(k) 

All above can be generated to other types of operators and corresponding fields. 
For higher point functions, recall 

log ZCFT [φ] = SE [Φc|∂AdS = φ] (10) 

We can consider, for instance, the action as 
ˆ   

√ 1 1 λ 
dd+1 2Φ2 Φ3S = − x g (∂Φ)2 + m + (11) 

2 2 3 

where λ ∼ κ ∼ O(1/N) (GN ∼ κ2). Now we need to solve a nonlinear equation of motion to get classical solution

 Φ − m 2Φ − λΦ2 = 0 (12) 

with 
lim z Δ−dΦ(x, z) = φ(x) (13) 
z→0 

Since λ is small, one can solve (12) perturbatively in φ(x) and get 

Φc = Φ1 +Φ2 + · · · (14) 

where Φ1 is linear in φ and Φ2 is quadratic in φ. Substitute this solution back to the action, we must get 

S[Φc] = S2[φ] + S3[φ] + · · · (15) 

where S2 is quadratic in φ and S3 is cubic in φ, which contain 2-point function and 3-point function respectively. 
In practice, of course it is tedious to go through this. But this is almost the same as standard perturbation theory 
in a QFT: we use Feynman diagrams! 
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Recall in a flat space QFT, how we calculate correlation functions. Consider the λΦ3 theory in flat space as 
(11). To get 

(Φ(x1)Φ(x2) · · · Φ(xn)) (16) ´ ´
Using exp(W [J ]) = DΦ exp(SE + dd+1xJ(x)Φ(x)), and 

δW (Φ(x1)Φ(x2) · · · Φ(xn)) = (17) 
δJ(x1) · · · δJ(xn) 

it is equivalent to calculate the following Feynman diagram: 
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Figure 1: Feynman Diagram in flat space 

Now back to AdS, one major difference is source φ(x) lies on the boundary. Then our Feynman diagram should 
be as follows: 
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Figure 2: Feynman Diagram in AdS 

'In the picture, the bulk-to-bulk propagator G(z, x; z , x') is given by 

'( − m 2)G(z, x; z , x') = √ 
1 

δ(z − z')δ(d)(x − x') (18) 
g 

'which is the counterpart of standard flat space propagator. In particular, G(z, x; z , x') should be normalizable 
' Δwhen either of z or z' is taken to the boundary, i.e. G(z, x; z , x') ∝ z as z → 0. This is the result of propagator 

construction from the quantization of normalizable modes. Furthermore, we must also introduce boundary-to-bulk 
propagator K(z, x, ; x'), which satisfies 

( − m 2)K(z, x; x') = 0 (19) 

K(z, x; x') → z d−Δδ(d)(x − x') (z → 0) (20) 

Φ(z, x) = 
ˆ 

dd x'K(z, x; x')φ(x') (21) 

such that Φ computed above behaves like zd−Δφ(x) near the boundary. The analogue of K in flat space is LSZ 
formula when dealing with external legs. 
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To summarize, the n-point function in CFT can be calculated as 

(O(x1) · · · O(xn)) = (Φ(x1) · · · Φ(xn))	 (22) 

where the right hand side can be computed by Feynman diagrams in AdS with end points lying on the boundary. 

Remarks: 

1.	 The full partition function can be separated as classical part and quantum fluctuation: 
ˆ	 ˆ

SE [Φ] SE [Φc ] +φ]−SE [Φc]ZCFT = DΦe = e DφeSE [Φc	 (23) 
Φ|∂AdS =φ 

where SE [Φc] corresponds to tree-level diagrams and φ integral is loop diagrams that can be captured 
by standard Feynman rules. 

2.	 The complete analogue of standard flat space Green functions are (Φ(z1, x1) · · · Φ(zn, xn)) that only 
includes bulk-to-bulk propagators. It is natural to expect 

(Φ(x1) · · · Φ(xn)) ∝ lim · · · lim (Φ(z1, x1) · · · Φ(zn, xn))	 (24) 
z1→0 zn→0

' This boils down to finding the relation between K(z, x; x ' ) and limzl→0 G(z, x; z x ' ), which we will discuss 
more explicitly in pset. The crucial result is 

−Δ1 −Δn(O(x1) · · · O(xn)) = lim 2ν1z · · · lim 2νnz (Φ(z1, x1) · · · Φ(zn, xn)) (25) 1 n 
z1→0 zn→0 

3.1.7: WILSON LOOPS 

Wilson loops ˆ
W [C] = TrP exp[i Aµdx

µ]	 (26) 
C 

are most non-local operators in a gauge theory. Here C is a closed path in space time, Aµ ≡ Aa T a where T a is often in µ

fundamental representation and P is path ordering. The physical meaning of Wilson loops is phase factor associated 
with transporting an “external” (quark) particle in a given representation along C. The simplest observable related 
to it is (0|W [C]|0), although we can also consider for some vacuum with temperature (Ψ|W [C1]W [C2] · · · |Ψ). An 
often used loop is as follows 

T

L

Figure 3: Square Wilson loop 

−iET In this picture T » L. From Wilson loop calculation in QFT, we know (W (C)) c e where E is the potential 
energy between an external “quark” and “anti-quark”. 

How to calculate (W (C)) in N = 4 SYM using gravity? First we need to understand how to introduce an 
external quark in N = 4 SYM and its AdS description. Suppose we have N + 1 D3 branes piled upon each other. 
If we separate one of them along one perpendicular direction for distance |4r| (shown in the following picture), 
the open string connecting those D3 branes will break symmetry from SU(N + 1) to SU(N) × U(1) and we will 
have some strings with two end points located on the separated D3 brane and the rest N ones respectively. If we 
consider the fluctuation field living on those D3 branes, this gives a description of a particle (“quark”) in fundamental 

|�r|representation of SU(N) with mass M = from symmetry breaking. 2παl 
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N+1

N
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string

r

Figure 4: D3 brane separation 

Now consider the low energy limit of Maldacena, α ' → 0 and r → 0 keeping r/α ' finite such that remaining in 
N = 4 SYM. In the resulted gravity side, N D3 branes have disappeared, one finds only one D3 brane in AdS5 × S5 

which located at 4r and the other N D3 branes disappeared at r = 0 such that we get a “string” hanging from the 
D3 brane at 4r to r = 0. If we want the “quark” to have infinite mass, we should take r → ∞, i.e. to the boundary 
of AdS. In this case, the external “quark” with M → ∞ in N = 4 SYM can be interpreted in bulk as a “string” 
hanging from the AdS boundary to deep interior and the hanging point is the location of the quark. 
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