VII Biological Oscillators

During class we consider the following two coupled differential equations:

. 2
X=—-x+ay+x
yrry [VIL1]
y=b—ay—x’y
From the phase plane analysis (see L9 notes.pdf) it was clear that for certain values of a
and b this system exhibits periodic oscillations as a function of time. Let us analyze

[VIL.1] in more detail. The nullclines are:

X
- 2
atx [VIL2]
b
a+x’
There is only one fixed point (x*,y*):
x =b
. b [VIL3]
e a+b’
The matrix A is (using [V.4] and [V.5]):
_ 1 2 * % *2
a=|TIH2yar oy [VIL4]
—2xy  —(a+(x)")
The determinant and trace are:
A=a+b>>0
_ b +Qa-)p +(a+a’) [VILS]
a+b’

The fixed point is stable when t < 0. The region in a-b-parameter space where the system
is oscillating (stable limit cycle) and is not oscillating (stable fixed point) is illustrated in

Fig. 10.
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MATLAB code 5: Limit cycle

%

filename:

function dydt

dydt [-y (1) +a*

b-a*y (2

drawnow;
hold on;
axis ([0 2 0 21);

cyclefunc.m

plot(y(1),y(2),".

f (t, Y flag/ alb)

y(2)+y (1) *y (1)
) -y (1) *y (1) *y (

(2);

Yy
)1:

*
2

")

Q

5 filename: limi

close;
clear;

’

a=0.1
b=0.5;

options=[];

tcycle.m

[t y]=0de23('cyclefunc', [0 50],[0.6 1.4],options,a,b);

plot(y(:,1),y(:,2));
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