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VII Biological Oscillators

During class we consider the following two coupled differential equations:
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From the phase plane analysis (see L9_notes.pdf) it was clear that for certain values of a

and b this system exhibits periodic oscillations as a function of time. Let us analyze

[VII.1] in more detail. The nullclines are:
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There is only one fixed point (x*,y*):
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The matrix A is (using [V.4] and [V.5]):
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The determinant and trace are:
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The fixed point is stable when τ < 0. The region in a-b-parameter space where the system

is oscillating (stable limit cycle) and is not oscillating (stable fixed point) is illustrated in

Fig. 10.
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MATLAB code 5: Limit cycle

Figure 11. a-b-parameter space
indicating for which values of a and b
the system exhibits stable oscillations
and a stable fixed point

% filename: limitcycle.m
close;
clear;

a=0.1;
b=0.5;

options=[];

[t y]=ode23('cyclefunc',[0 50],[0.6 1.4],options,a,b);

plot(y(:,1),y(:,2));

% filename: cyclefunc.m

function dydt = f(t,y,flag,a,b)

dydt = [-y(1)+a*y(2)+y(1)*y(1)*y(2);
   b-a*y(2)-y(1)*y(1)*y(2)];

plot(y(1),y(2),'.');
drawnow;
hold on;
axis([0 2 0 2]);


