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A second study describes the development of a genetic oscillator based on the

combination of positive and negative feedback:

M. R. Atkinson, M. A. Savageau, J. T. Myers, and A. J. Ninfa. Cell 113, 597-607

(2003)

In this lecture we will derive the stability diagram in Fig. 1B. In the model odd

subscripts are used for mRNA whereas even subscripts are used for proteins. For

example, the translation of mRNA is modeled as:
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where kp is the translation rate constant and β2 is the decay rate constant of the protein X2.

When X2 and X1 are normalized to their steady state values: sspss X
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the form:
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Analogously the system of equations describing the genetic circuit in Fig.1A is:
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The functions f1, f3, and f5 describe the transcriptional regulation and are defined by tri-

phasic functions. For the stability analysis only the first four equations are relevant since

no feedback occurs after x4. As described in the Supplementary information of the paper:
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In the case of a single fixed point, this point occurs at x1=x2=x3=x4=1. The matrix A is

now defined as:
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The eigenvalues of this matrix are found by solving:
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This leads to the characteristic equation in the form:
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Solving for the λ’s is difficult. However there is a convenient mathematical condition,

called the Routh-Hurwitz criterion that allows you to determine the stability without

explicitly calculating the eigenvalues. The Routh-Hurwitz criterion states that a system is

stable (real part of all eigenvalues is negative) if all coefficients [VII.23] are positive and

all elements in the first column of the Routh-Hurwitz matrix are positive. This matrix is

constructed as follows:
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The matrix has n+1 (in our case 5) rows:
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where
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The Routh-Hurwitz stability criterion states that the number of roots with positive real

parts is equal to the number of sign changes of coefficients in the first column of the

matrix. Let’s apply this criterion to our problem. First we have to make sure that all

coefficient ai are positive. ao and a1 are always positive, a4 is positive if:

123214 1 ggg −< [VII.26]

This is the line with the negative slope in the stability diagram (Fig. 1B). a2 is positive if:
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If β1≈β3 and β2≈β4 this is satisfied when g12 < 4. Similarly, a3 is positive if
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If β1≈β3 and β2≈β4 this is satisfied when g12 < 2. Therefore the conditions for positive ai

are:
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The next step is to calculate b1, c1, and d1. Substitution in [VII.25] yields d1=b2=a4>0

because of [VII.26]. b1 >0 is equivalent to:
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Rewriting gives:
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The first term is larger than the last term in [VII.31] cancel if g12<4 which is already

satisfied by [VII.29]. The remaining is:
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The left sum has in total 12 terms whereas the right has four. So as long as g12<3, b1>0.

The last condition to prove is: c1>0.
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Substitution of [VII.25] gives:
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The easiest way to solve this is graphically. The values for the degradation constants are:

β1 = β3 = β5 = 20.8 + 0.696/td hr-1 and β2 = β4 = β6 = 0.696/td hr-1. Figure 12 shows the

stability region (also see MATLAB code 6).

MATLAB code 6: Routh-Hurwitz criterion:
clear;
close;
g1=0:0.1:4;
t_D=0.5;
b1=20.8+0.696/t_D;
b2=0.696/t_D;
b3=20.8+0.696/t_D;
b4=0.696/t_D;
a0=1;
a1=(b1+b2+b3+b4);
a2=(b1*b2+b1*b3+b1*b4+b2*b3+b2*b4+b3*b4)-g1*b1*b2;
a3=b1*b2*b3+b1*b2*b4+b2*b3*b4+b1*b3*b4-g1*b1*b2*b3-g1*b1*b2*b4;
y1=1-(a1*a2.*a3-a3.*a3)./(a1*a1*b1*b2*b3*b4);
y2=1-g1;
plot(g1,y1,'b',g1,y2,'r');
axis([0 4 -20 2]);
grid on;
xlabel('g12');
ylabel('g14g32');
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Figure 12. Stability analysis of synthetic oscillator of Atkinson et al.


