
VII Biological Oscillators 

During class we consider the following two coupled differential equations: 
2x & − = x + ay + y x 

[VII.1]
2y & = b − ay − y x 

From the phase plane analysis (see L9_notes.pdf) it was clear that for certain values of a 

and b this system exhibits periodic oscillations as a function of time. Let us analyze 

[VII.1] in more detail. The nullclines are: 

x y = 
a + x 2 

[VII.2]
b y = 

a + x 2


*
There is only one fixed point (x*,y ): 
* x = b 

[VII.3]
* b y = 2a + b 

The matrix A is (using [V.4] and [V.5]): 
* 2 

A = 
− 1 + 2 y x * a + (x *) 

[VII.4]
* 

 − 2 y x * − (a + (x *)2 )
 

The determinant and trace are: 

∆ = a + b 2 > 0 
b 4 [VII.5]+ (2a − 1)b 2 + (a + a 2 )τ − = 

a + b 2 

The fixed point is stable when τ < 0. The region in a-b-parameter space where the system 

is oscillating (stable limit cycle) and is not oscillating (stable fixed point) is illustrated in 

Fig. 10. 
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Figure 11.
indicating for which values of a and b 

and a stable fixed point 

 a-b-parameter space 

the system exhibits stable oscillations 

MATLAB code 5: Limit cycle 

% filename: limitcycle.m
close;
clear; 

a=0.1;
b=0.5; 

options=[]; 

[t y]=ode23('cyclefunc',[0 50],[0.6 1.4],options,a,b); 

plot(y(:,1),y(:,2)); 

% filename: cyclefunc.m 

function dydt = f(t,y,flag,a,b) 

dydt = [-y(1)+a*y(2)+y(1)*y(1)*y(2);
b-a*y(2)-y(1)*y(1)*y(2)]; 

plot(y(1),y(2),'.');
drawnow;
hold on;
axis([0 2 0 2]); 
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Recently Elowitz et al. constructed a genetic oscillator ‘from scratch’ in the bacterium 

Escherichia coli. Details of these experiments can be found in: 

M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional 

regulators. Nature 403, 335-338 (2000). 

In class we derived the conditions under which the network exhibits oscillations. The 

chemical reactions describing the concentration of mRNA m and protein concentration p 

are (see Box): 

αdmi − = mi + +α n odt (1+ p j ) [VII.6]
dpi − = β ( p − m )
dt i i 

where the index i=[lacI,tetR,cI] and the index j=[cI,lacI,tetR]. Below will we use 

numerical indices to represent the repressors. Let us assume that we can ignore the 

intermediate step of mRNA synthesis. This leads to the following three equations: 

αdp1 − = p + +α n odt 1 1 + p3 

αdp2 − = p + +α [VII.7]
dt 2 1 + pn o 

1 

αdp3 − = p + +α
dt 3 1 + pn o 

2 

In the analysis below we will assume that all three genes have the same basal synthesis 

rate α o, maximum synthesis rate α , and Hill coefficient n. Note that time is measured 

with respect to protein decay rate. As all three genes have the same properties, the steady-

state values of the mRNA and protein concentrations will be: 

p ≡ p = p2 = p [VII.8]1 3 

therefore in steady-state, 

α p = +α [VII.9]n o1 + p 

For the stability analysis we have to determine the matrix A (Jacobian) as described 

before (see section V): 
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− 1 0 X  
A =  X − 1 0  [VII.10] 

 0 X − 1 

where 
n − 1 

X − ≡ 
α np 

n )2 [VII.11]
(1+ p 

For the steady state to be stable, the real part of the eigenvalues of matrix A have to be 

negative. As mentioned in [V.8] the eigenvalues can be found by solving: 

1 −− λ 0 X  
det 

 X 1 −− λ 0 0=  
 [VII.12] 

  0 X 1  −− λ 

Leading to 
3 3− (1+ λ ) + X = 0 [VII.13] 

This equation has three solutions, one real and two complex: 

λ 1 = X − 1 

1 31λ 2 − − = X + i X [VII.14]
2 2


1 3
1λ − − = X − i X3 2 2 

For a stable fixed point the real part of all eigenvalues should be negative. Therefore the 

system is stable for: 

− 2 < X < 1 [VII.15] 

X is negative by definition (see [VII.11]) so the final stability condition is: 
n− 1α np

< 2 [VII.16]
(1+ pn )2 
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