
Systems Biology 7.81/8.591/9.531 

Problem Set 2 Assigned: 10.06.04 
Due in class Due: 10.19.04 

1. Biochemistry of the chemotaxis network. 
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The E. coli chemotaxis network is represented here in simplified form. T represents the Tar
receptor, and L the ligand or attractant. The receptor can by modified by phosphorylation
(subscript P) or methylation (subscripts 2 or 3).

The Tar receptor binds an extracellular ligand L according to 

, with . Calculate the fraction of bound receptor. 
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(10)	 b. We now assume that the ligand binding reaction is in rapid equilibrium, and only 
consider total amounts of each modified form of receptor. For example, 

T3P
tot = T3P + LT3P , etc. How would you calculate the effective rate constants ka,...,kd 

and k-a,...,k-d between these total concentration pools in terms of the rate constants of 
the original methylation /demethylation and phosphorylation/dephosphorylation 
reactions? 
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(10)	 c. The assumed rates in the models of Spiro et al. and Barkai et al. are shown in the table 
below. Write down explicitly the effective rate constants for each model, in terms of 
the symbols listed in the table. 

Spiro model Barkai model 

L-unbound L-bound L-unbound L-bound 

ka k8 0 ka 0 0 

k-a ky ky k-a k0 k0 

kb 3 k8 1.1 k8 kb kp1 kp2 

k-b ky ky k-b k-p1 k-p2 

kc k1 k3 kc k k 

k-c k-1 k-1 k-c 0 0 

kd k1 k3 kd 0 0 

k-d k-1 k-1 k-d km km

                        Note that some effective rate constants are now functions of L. This is appropriate, 
since we know for example that the receptors should become less phosphorylated as L 
increases. 

i) In the Spiro model, do ka/k-a and kb/k-b increase or decrease with L? 

ii) In the Barkai model, we would like kb to decrease and k-b to increase with L. What 
does this imply about kp1, kp2, k-p1 and k-p2? 

(10)	 d. Spiro model. In steady state, after the slow methylation reactions have had time to 
equilibrate, let α(L) represent the fraction of receptors that are methylated. Consider 
now the total concentration of phosphorylated and unphosphorylated receptors. Write 
out explicitly, in terms of α(L), the effective rates of phosphorylation (kp) and 
dephosphorylation (k-p) using 

k p = 1( −α )) ( ka +α ) (	 L −a k L −bL L kb , k− p = 1( −α )) ( k + α ) ( 

For perfect adaptation to be achieved, the phosphorylated fraction of receptor must be 
independent of L in steady state. You should have found above that k-p = ky; it is 

*therefore sufficient for perfect adaptation that kp = kp  is a constant. 
*Set k8 = 15 s-1; KL = 1x106 M-1; and kp  = 15 s-1. Plot ka and kb for L = 0, ..., 2 KL. On 

* *the same graph, draw a horizontal line showing the desired kp . Finally, set kp = kp in 
the equation above, solve for α(L), and plot this function. This is the magical form of 
α(L) required for perfect adaptation. The model of Spiro et al. is carefully “tuned” in 
order to achieve this result. We can contrast this situation with the Barkai model in 
part f, which is perfectly adapting but requires no fine tuning. 
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(10)	 e. Barkai model. Biochemical evidence suggests that the methylation reaction (whose 
rate constant was written as k in part c) operates at saturation with rate v. Show that 
under this assumption, the entire model reduces to the following reaction scheme: 
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Note that v is a constant rate (measured in M s-1) while km is a rate constant (measured 
in s-1). What is the value of km’ ? 

( tot 

Write down the equation for 
T d 3 

tot + T3 p )  and solve for T3p
tot in steady state. Show 

dt 
that this value is independent of L if and only if km’ = 0. This is the essence of the 
Barkai model: perfect adaptation is easy to achieve, as long as only the 
phosphorylated receptors are demethylated by the CheB protein. 
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2. Adaptation and frequency response of the chemotaxis network. 

With a slight change of notation, the Barkai model of the chemotaxis network (see Problem 
1f) can be represented as 

v 
k+ ) ( L 

C *C 
) ( Lk− 

km’ km 

*Here, v represents the rate of creation of C, the unphosphorylated receptor; C  is the 
phosphorylated or active form of the receptor, the actual signal which induces bacterial 
tumbling; km and km’ are the rate constants of demethylation reactions; and finally, k+ and k-

are rate constants that represent the effect of ligand binding on the phosphorylation state of 
the receptor. 

Set α + =
∂k+ < 0 , and α − =

∂k− > 0 . This ensures that a sudden increase of ligand 
∂L	 ∂L 

concentration causes a drop in the phosphorylated fraction of the receptor. 
*(10) a.	 Write down the equations for dC/dt and dC /dt. Solve for the steady state 

*	 *concentrations Css and C ss. Under what conditions will C ss be independent of L? 

*(10) b.	 Set δC = C − C , δC * = C − C *ss . Derive the linearized equations representing ss 

fluctuations from steady state, driven by fluctuations δL(t)  of the ligand 
concentration. You should obtain 

d  δC  − (k+ + km ) '  δC 	  1  
dt δC * 


=	

+ k− 

) *  + (α C * −α+ C )δL .− ss ss   
 + k+ − (k− + km δC  − 1 

(10)	 c. Assume for now that δL = 0, km’ = 0, and km = 0. Calculate the eigenvectors and 
eigenvalues of the above matrix. You will find that one of the eigenvalues is zero. 
Recalculate this eigenvalue to first order in km. 

On a graph of δC vs. δC*, plot the eigenvectors and note the slow and fast eigenvalues. 
Sketch a few typical timecourses for various initial values of {δC,δC*}. This initial 
perturbation might arise if the system had first reached steady state for one value of L, 
but that value was abruptly changed. Sketch out such an event, showing a step 

*increase in L at time t = 0, and the subsequent evolution of C, C , and CT as functions 
of time. 

(10)	 d. Now assume that δL, δC, δC* ~ eiωt. This corresponds to Fourier transforming the 
equation above. 
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*δC (ω )
Calculate the transfer function T (ω) = . 

L(ω δ ) 

Claiming that perfect adaptation holds corresponds to claiming that T(ω) has no dc 
component (T(ω = 0) = 0). Show that this is true only if km’  = 0. Assume from now on 
that km’  = 0. 

(i) What is the behavior of T(ω) as ω → 0? 

(ii) What is the behavior of T(ω) as ω → ∞? 

(iii) Calculate the value ω* at which T(ω) is maximized. 

(iv) Make a sketch of T(ω), indicating all the important regimes. 

(10) e. From this sketch, it should be clear that the chemotaxis network serves as a bandpass 
filter: variations of L slower than the demethylation rate km are suppressed by the 

*adaptation property of the network; fast fluctuations of L are suppressed because C
cannot respond any faster than the phosphorylation rate. 

(i) Suppose fout(t) = dfin(t)/dt. Calculate Tdiff(ω) = |fout(ω)/fin(ω)|. This is the transfer 
function of a differentiator.  For what values of ω does the chemotaxis network serve 
as a differentiator? 

(ii) The network most efficiently transmits signals at the frequency ω* calculated in 
*part d(iii). What is the value of ω  , assuming  km ~ 0.01 s-1 and k+ ~ 10 s-1? 

(iii) It is said that “a cell compares the attractant concentration at any given time 
to that 4 seconds ago”, generating a tumble if it registers a decrease or a run if it 
registers an increase. That is, only by differentiating the input does the cell manage to 
swim up an attractant gradient. Is the timescale of 4 seconds consistent with your 
answer from the part (ii)? 
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