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Lecture 22: The Kondo Problem: Singlet 
Ground State and Kondo Resonance 

In recent lectures, we have spent considerable time discussing the effect of a local magnetic 
moment on the electronic structure of materials. The question we turn to now it that of the 
ultimate fate of a local moment immersed in a sea of conduction electrons. In the large U limit, 
that is the limit in which the on­site repulsion energy U is much greater than the local moment 
resonance width Δ, we will examine the residual interaction between the local moment and the 
conduction electrons. 

22.1 Residual Interaction Between a Local Moment and the Fermi Sea 

For simplicity, we assume that the local moment has spin S = 1/2, as would be the case for an 
element such as titanium which has only one d­level available for coupling. Consider a single 
electron with wave vector �k in a state just above the Fermi surface, and a singly occupied d­level 
well below the Fermi surface. If both states are occupied with the same spin, the only interesting 
low energy process that can happen is potential scattering of the conduction electron into a state 
with new momentum �k�. 

When the states are occupied by opposite spins, virtual excitations resulting in spin exchange 
between the two sites are possible. The first way this for this to happen is for the conduction 
electron to jump into the d­level to form a doubly occupied intermediate state. This state can then 
decay back to the original state, or a state in which the spins are flipped relative to the original 
configuration. Due to the double occupation of the intermediate state, however, the system must 
pay the on­site repulsion cost U ; the energy cost of the doubly occupied intermediate state relative 
to the initial configuration is U + �d − ��        k. An alternative process through which spin exchange 
can take place without incurring the same­site repulsion cost is for the d­electron to be excited 
to a new state of momentum �k�, after which the excited electron of opposite spin can drop down 
to the now unoccupied d­level. The energy cost of this intermediate is simply �� d. k� − �

We can write the Hamiltonian for this interaction via the Schrieffer­Wolf transformation �  
ˆ = � · �H J� � Sk S� � k + 

�
K�� c

† ck k (22.1)� � kk� � �k� σ kσ 
� � �k k� �k k� σ 

where 

�S�  �  = c†�  
�σ� αβ c�k k (22.2)

k�α kβ 

The second sum accounts for simple potential scattering of the electron outside the Fermi 
surface. The σ+ and σ− components of �σ in the definition of �S�  ount f  k  �k acc or the possibility of �
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2 The Kondo Problem 

S = �spin exchange in the Hamiltonian. For a local moment, � σ. Due to the rotational invariance 
of spin space, the only spin operators that can appear in the Hamiltonian are the identity and 
scalar product � k� � .S ·S�� k

Next we must determine the coefficients J� k� . Recall the Anderson Model, in which hy­k�

bridization between the d­level and conduction band was accomplished by including the terms 

c cdσ + V
kkσ 

k σ 

Thus V�k is the matrix element for going from the d­level to a state of momentum �k above 

† cdσ
∗ 

�Ĥhybrid = V�k c kσ 

the Fermi surface, and the reverse for V
k 

processes we get 

∗ 
� . Thus for the total matrix element of all exchange 

1 1 
J� k� = −V�Vk� k k� 

∗ 
� + 

U + �d − �� ��k k� − �d 
(22.3) 

where the first term corresponds to the process with the doubly occupied intermediate, and the 
second corresponds to the process involving only singly occupied states. 

From this point forward, all energies denoted by the symbol ε will be measured relative to 
the Fermi energy. Because we are focusing on states with momentum near the Fermi surface, 

k ≈ 0, and hence ε� εd|, U . Thus to get an estimate of J� k� we can leave off the ε� termsk� kε� k � |

U 
k� (22.4)J� k� ≈ −|V |2 

εd (U − |εd )| | |

In the strong repulsion limit, 

U →∞, J�k�k� → −|
|
V

εd

|2 

| 

Because this coupling constant is nonzero, the Hamiltonian for this system causes spin flips; 
as a result, the ground state is no longer simply a local moment occupied by an up­spin or a 
down­spin. 

22.2 The Kondo Problem 

We now will focus on the spin­exchange part of the Hamiltonian 22.1 

H = −J �ˆ S ·S� (22.5) 

with J > 0. This is an antiferromagnetic exchange, and is sometimes referred to as “S­d ex­
change.” 

A long standing problem in solid state physics at the time of Kondo’s work was the existence 
of a resistivity minimum at low but finite temperatures.1 Based on considerations of electron­
phonon scattering and impurity scattering, one would expect the resistivity to decrease with 
temperature down to a limiting value at T = 0. Observations, however, showed that below a 
certain temperature TK, the resistivity would increase again, and finally saturate at a higher­
than­expected value at T = 0. 
1 TK varies drastically with host/impurity, and can be anywhere in the range 10−3K to 100K. 
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Variational Approach to the Kondo Problem 3 

The basic understanding of this phenomenon is that, even though one would expect the 
material to become “dead” as phonons freeze out as T → 0, spin flips are still possible and 
provide a residual scattering mechanism for conduction electrons. In 1964, Kondo perturbatively 
calculated the scattering amplitude t� k� of conduction electrons by a local moment, in powers of k�

the coupling constant J . While most of us probably would have been satisfied to stop with the 
first order result, Kondo continued to second order and obtained 

t�k� = J + J2N(0) ln 
�F (22.6)k� 
T 

As T → 0, the scattering amplitude diverges logarithmically in the second order term! 
Resistivity R is proportional to the scattering probability, which is in turn proportional to 

|t� k� |2 . Thus to lowest diverging order, k�

�F
R ∝ J2 + J3N(0) ln (22.7)

T 

This result explains the resistivity minimum, but does not explain the observed saturation 
as T approaches 0. The perturbative result breaks down in this regime, but a full solution is 
possible using Renormalization Group methods (Wilson, Review of Modern Physics, 1975). The 
conceptual answer to the question of the fate of a local moment in a conducting Fermi sea is 
that a doublet state will bind to another electron to give a singlet state, leaving behind just a 
renormalized strength of potential scattering in the system. 

22.3 Variational Approach to the Kondo Problem 

Due to the breakdown of perturbation theory with the appearance of a logarithmic singularity in 
the electron­local moment scattering amplitude, we must seek a different approach to analyzing 
the Kondo S­d model.2 The method we employ here is the variational method, starting with the 
trial wave function ⎡ ⎤ 

0 � = ⎣α † cdσ kσ 
⎦ | 0 � (22.8)0 + αk| ψ c

k<kF ,σ 

where 0 � represents the filled Fermi sea ground state of the pure system. |
The first term is simply the amplitude for the filled Fermi sea with the d­state empty in 

the trial wave function, while the second term is a superposition of states with a filled impurity 
d­level and a hole in the Fermi sea at momentum �k. In the end, the amplitude α0 turns out to be 
very small, but still leaves a nonzero probability of finding the d­level empty. More interesting, 
however, is that this trial wave function represents a spin singlet state, while our naive expectation 
was to have an isolated spin filling the d­level (doublet), separate from the Fermi sea. 

To calculate the variational energy of the trial wave function, we use the variational energy 
functional 

˜ 0 H ψ0 �
E[ ψ0 �] = 

� ψ | ˆ | 
(22.9)

ψ0 �
|

� ψ0 |
with the Hamiltonian coming from the Anderson model in the large U limit 

Ĥ = ε c
kσ 

k,σ k,σ 

2 See Phillips’ book for a similar approach. 

†cd V c
k 

†cd k + U n (22.10)∗ 
�cd + V
k 
cd + +εd c c nd dk kσ k ↑ ↓ 
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4 Variational Approach to the Kondo Problem 

We have implicitly subtracted out the energy of the filled Fermi sea so that all energies in the 
Hamiltonian are measured relative to the Fermi surface. This leads to 

2 k<kF 
α�

2 (εd − ε�k) + 2 α0α�V�

Ẽ[| ψ0 �] = k � 
k k 

(22.11)
α 2 + 2 � α 2 

0 k �k 

The 2 out front and the 2 in the denominator come from the spin sums, while the 2 in the second 
term of the numerator comes from the cross term. Continuing with the minimization procedure, 

(α 2 + 2 α 2) ˜
k) + 2 α0α�V�E = 2 (α�

2 (εd − ε� k) (22.12)0 �k k k

� k<kFk 

∂ ˜ EThe extremum condition is E = ∂ ˜ = 0. This yields the system ∂α0 ∂α�k 

˜α0E = 2 α�V� (22.13)k k 
k<kF 

α�E = (εd − ε�˜
k) α� + α0V� (22.14)k k k 

which can be combined through rearrangement and substitution of 22.14 in 22.13 to give the self 
consistent equation for Ẽ 

˜
� V�

2 

E = 2 ˜
| k| (22.15)

E − εd + ε�k<kF k 

˜Now define the binding energy ΔK = E − εd. This quantity compares the energy of the 
Kondo singlet trial wave function with the energy of a singly­occupied d­level plus the filled 
Fermi sea (εd in our notation). Substituting this into the self consistent equation and using the 
fact that ε� < 0 since the only available states are those below the Fermi surface, k � V�

2 

εd + ΔK = 2 
| k| (22.16)

ΔK + ε�
k<kF k � V�

2 

= 2 
| k| (22.17)

ΔK − ε�
k<kF 

| k| 

If we let V� V be a constant (independent of �k) and change the sum to an integral, we k →
get 

εd + ΔK = 2N (0) 
� �F 

dξ 
−V 2 

(22.18) 
0 ξ − ΔK 

where N (0) is the one­spin density of states. This is the same integral as in the BCS self consistent 
equation, and likewise is logarithmically divergent at low energies. This behavior comes from the 
existence of a sharp Fermi surface, and like in BCS theory, we always find the solution 

�F
εd + ΔK = −2N (0) V 2 ln (22.19)| |

|ΔK | 
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When the binding energy ΔK is weak compared to the energy of the d­level relative to the 
Fermi surface, i.e. ΔK < 0, |ΔK � εd, we can neglect ΔK on the left hand side and rearrange |
to get 

1 

ΔK = −�F e
− 

2N (0)V 2 /εd (22.20) 

Recall that V 2/εd is the value we found for the coupling constant J in the S­d Hamiltonian. Thus 

1 

ΔK = −�F e
− 2N (0)J (22.21) 

which is negative. Thus the singlet ground state represented by our trial wave function is favorable. 

The key points of our discussion up to here are summarized below: 

(i)	 The admixture of an empty d­state into the system’s wave function is important, and is 
needed to produce the Kondo exchange energy. This was incorporated into our model in the 
form of the virtual intermediate states and the Schrieffer­Wolf transformation. 

(ii) With our trial wave function, the cost of having an empty d­level is reduced from |εd| to 
Thus the cost of the empty state is weighted by a small fraction, but we still gain |α0|2εd. 

the hybridization/hopping energy from the cross term V α0. 

(iii) A logarithmic singularity appeared in our results because of the possibility of making hole 
excitations with arbitrarily low energy. That is, because of the lack of an energy gap at the 
Fermi surface, it is easy to excite low energy modes and to gain the hybridization energy. 

We should note that we have cheated slightly in the discussion so far. We compared Ẽ with 
εd, but the system consisting of a singly occupied d­level and a filled Fermi sea has an odd number 
of electrons. In this case we think of the spin on the d­level as pulling in one conduction electron 
to form a bound state; the excess spin is in a superposition of momentum states located on the 
Fermi surface, and thus costs no energy. 

22.3.1 Kondo Temperature 

The binding energy ΔK sets an energy scale for these Kondo­type spin fluctuations. This energy 
scale in turn sets a temperature scale, giving us an estimate of the Kondo temperature 

TK ≈ ΔK /kB	 (22.22) 

Due to the exponential dependence of ΔK on the coupling constant J , it is reasonable to expect 
a huge range of possible values of TK . This is in agreement with the observation that TK varies 
on the scale from 10−3K to 102K. Note that there is no divergence of susceptibility at TK , and 
that there is no actual phase transition at this temperature. 

22.3.2 d­level Occupation 

Because we are working in the large U (strong repulsion) limit and εd is large and negative, we 
expect the occupation �nd� of the d­level to be close to unity. Thus we compute 

α 2 
0 nd� = �	 (22.23)1 − �

α0
2 + 2 � α 2 

k �k 
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1 
= � � 

α�

�2 (22.24) 
k1 + 2 �k α0 

Returning to the variational minimization step 22.14, we have � �2 V�
2

α�k = k (22.25)
α0 (ΔK + ε�k )

2 

ΔK and ε� are both less than 0, so there is no chance of division by 0. k � α�
�2 � �F |V |2 

2 k = 2N(0) dξ (22.26)
(|ΔK + ξ )2 

k 
α0 0 | | |

= 2N(0) 
|V |2 

(22.27)
ΔK 

2 Δ 
= (22.28)
π ΔK 

where Δ is the bare resonance width of the d­level. 
Thus 

1 
(22.29)nd� = 

2Δ
1 − �

1 + πΔK 

πΔK (22.30)≈ 
2Δ 

� 1 

The approximation is valid because Δ ≈ 0.5 eV, and ΔK ≈ 10−3 eV. 
From this result we see that the deviation of the d­level occupation from unity is very small; 

in the variational Kondo wave function, the d­level is nearly singly occupied, but not quite. In 
previous lectures, we obtained the Hartree­Fock solution to the Anderson model. One key feature 
of this solution was that it predicted a doublet of degenerate ground states for the system. The 
Kondo variational ground state is a singlet, on the other hand, and does not distinguish up from 
down spins. 

22.4 Kondo Resonance 

Due to the slightly less than unit occupation of the d­level in the Kondo ground state, there is 
a slight excess of electron density that gets pushed up to the Fermi surface. This peak in the 
density of states is due to the Kondo resonance at the Fermi level, with width ΔK and integrated 

πΔKarea 1 − �nd� = .2Δ 
The presence of this resonance at the Fermi level is more easily understood by appealing 

to the Friedel Sum Rule. In the simple Hartree­Fock approach, where we considered the state 
consisting of a singly occupied d­state plus a filled Fermi sea, we had �nd = 1, �nd↓� = 0, or ↑� 
nd↑� = 0, �nd↓� = 1 for the two degenerate situations. Recall from the Friedel sum rule that the 

phase shift η divided by π gives the total number of occupying electrons — thus for the doublet 
case we have η = π, η = 0 or η = 0, η = π. ↑ ↓ ↑ ↓

In the case of the Kondo variational singlet state, since we found that the total occupation 
nd� ≈ 1, this means that �nd nd↓� ≈ 1/2 (in a singlet state, the up and down spin � ↑� = �
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occupations must be the same). This means that at the Fermi energy, ηd = ηd↓ ≈ π/2. Thus 
we discover the presence of a resonance at the Fermi level (see figure). 

↑ 

Can we detect this resonance experimentally? One might try to use photoemission to de­
tect the enhanced density of states near the Fermi surface, but unfortunately the resolution of 
this method is not good enough to resolve the feature. Other systems which exhibit behaviors 
characteristic of the Kondo resonance include quantum dots and scanning tunneling microscope 
(STM) experiments. 

The quantum dot setup consists of a conducting region 100 − 1000Å wide, surrounded by 
two conducting leads. The leads play the role of the Fermi sea, while the dot itself offers a 
low­lying resonant state playing the role of the impurity d­level. By applying a voltage across 
the leads and watching the resultant current, one can detect the presence of the resonance at �F 

by an increased tunneling current. For temperatures less that TK , there is a peak in the dI/dV 
curve. As we know, TK is very sensitive to the coupling constant J, which in the quantum dot 
setup is related to the dot­lead tunneling matrix element. This method of looking for the Kondo 
resonance was first proposed by Ng and Lee, and by Glazman and Raich in 1988, and observed 
experimentally in 1998 by Goldhaber­Gordon and Kastner. 

A similar result is obtained from an STM experiment in which magnetic atoms are placed on 
a conducting substrate, such as cobalt on gold (Crommie, Madhaven et al. Science, 280, 567.), 
or cerium on silver. In both experiments, however, rather than seeing a simple Lorentzian peak 
in dI/dV at the resonance energy, a Fano line shape is observed. 
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8 Kondo Resonance 

22.4.1 Fano Resonance 

Why is this strange line shape observed? Consider the STM experiment with cobalt atoms 
adsorbed on a gold substrate. The Hamiltonian for the interaction between the STM tip denoted 
by subscript t, the cobalt d­level denoted by subscript d, and the conduction band of the gold 
substrate denoted by subscripts �k is 

HSTM
ˆ c ct + T 

k 
k 

∗ 
�kt 

This Hamiltonian reflects the possibility that electrons can tunnel from the STM tip into either 
the d­level of the cobalt atoms, or the conduction band of the gold substrate. Because the cobalt 
atoms are localized on the substrate, the tunneling amplitudes Tdt and T� are functions of the kt 
spatial position of the tip. Interference between these terms occurs, and is discussed in the 
appendix of the paper by Crommie’s group (Madhaven et al. Phys. Rev. B, 64, 165412.), as well 
as in the book by Grosso and Parravicini on page 452. The result based on these considerations 
is the tunneling rate 

w ≈ Const. + 

� 
Δε 
Γ + q 

�2 

1 + 
� 

Δε 
Γ 

�2 π 

⎡ ⎣ 
� 

�k 

|T�kt|
2δ(ε − ε�k ) 

⎤ ⎦ (22.32) 

with 

Δε = ε − ε̃d (22.33) 
q = A/B (22.34) 

and 

A = Tdt + 
� 

�k 

T�kt Vd�k � 

Pr 
� 

1 
ε − ε�k 

� 

(22.35) 

B = π T�kt Vd�k δ(ε − ε�k) (22.36) 
�k 

If q � 1, the tunneling is mostly into the localized d­level and a Lorentzian form is observed. 
For q → 0, however, the tunneling current dips to zero around Δε = 0. Why is this so? When the 
localized state is inserted into the system, a portion of the continuum states around the d­level 
are “pushed away” to make room for the new state. This results in a depleted continuum density 

εd. Near ˜of states near ˜ εd, most of the amplitude is in the localized state, but with q → 0 there 
is no matrix element to tunnel into this state. Thus the tunneling current dips to zero in this 
region. 

For q ≈ 1, a mixture of both effects is observed, thus producing the Fano line shape of a dip 
compounded on a peak. 

22.4.2 Further Consequence of the Kondo Resonance 

The electron­impurity scattering cross section is given by 

2 
σ = (� + 1)2 sin2(η� − η�+1) (22.37)

kF 

†
t 

∗ cdt
† + Tctd

†
t (22.31)= Tdt c cd + T�kt c c�k 
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If only � = 2 partial waves contribute significantly, then when η�=2 = π/2 the scattering 
cross section reaches the unitarity limit. That is, the scattering probability attains its maximum 
possible value. Thus for the singlet ground state, we see evidence for saturation of scattering 
probability, which in turn explains the saturation of resistivity as T 0.→

In the presence of magnetic field of strength gµB H ≈ kB TK it is possible to overcome the 
ground state’s tendency towards forming a spin singlet. Above this field strength, the resistivity 
returns to its normal form of monotonically decreasing as T → 0. In this regime where resistivity 
decreases with increasing field strength, the material exhibits a negative magnetoresistance. 


	Lecture 22: The Kondo Problem: Singlet Ground State and Kondo Resonance
	Residual Interaction Between a Local Moment and the Fermi Sea
	The Kondo Problem
	Variational Approach to the Kondo Problem
	Kondo Temperature
	d-level Occupation

	Kondo Resonance
	Fano Resonance
	Further Consequence of the Kondo Resonance



